
1

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Specification Agreement

This Specification Agreement (this “Agreement”) is a legal agreement between Advanced Micro
Devices, Inc. (“AMD”) and “You” as the recipient of the attached AMD Specification (the “Specifi-
cation”). If you are accessing the Specification as part of your performance of work for another party,
you acknowledge that you have authority to bind such party to the terms and conditions of this Agree-
ment. If you accessed the Specification by any means or otherwise use or provide Feedback (defined
below) on the Specification, You agree to the terms and conditions set forth in this Agreement. If You
do not agree to the terms and conditions set forth in this Agreement, you are not licensed to use the
Specification; do not use, access or provide Feedback about the Specification.

In consideration of Your use or access of the Specification (in whole or in part), the receipt and suffi-
ciency of which are acknowledged, You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing
Your product, service or technology (“Product”) to interface with an AMD product in compliance
with the requirements as set forth in the Specification and (b) to provide Feedback about the informa-
tion disclosed in the Specification to AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by
AMD. This Agreement does not give You any rights under any AMD patents, copyrights, trademarks
or other intellectual property rights. You may not (i) duplicate any part of the Specification; (ii)
remove this Agreement or any notices from the Specification, or (iii) give any part of the Specifica-
tion, or assign or otherwise provide Your rights under this Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include
certain necessary information. Additionally, AMD reserves the right to discontinue or make changes
to the Specification and its products at any time without notice. The Specification is provided entirely
“AS IS.” AMD MAKES NO WARRANTY OF ANY KIND AND DISCLAIMS ALL EXPRESS,
IMPLIED AND STATUTORY WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, TITLE OR THOSE WARRANTIES ARISING AS A COURSE OF DEALING
OR CUSTOM OF TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, CONSE-
QUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE OR EXEMPLARY DAMAGES OF ANY
KIND (INCLUDING LOSS OF BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROF-
ITS, LOSS OF CAPITAL, LOSS OF GOODWILL) REGARDLESS OF THE FORM OF ACTION
WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE) AND STRICT PRODUCT
LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as com-
ponents in systems intended for surgical implant into the body, or in other applications intended to
support or sustain life, or in any other application in which the failure of AMD’s product could create
a situation where personal injury, death, or severe property or environmental damage may occur.

5. You have no obligation to give AMD any suggestions, comments or feedback (“Feedback”) relat-
ing to the Specification. However, any Feedback You voluntarily provide may be used by AMD with-
out restriction, fee or obligation of confidentiality. Accordingly, if You do give AMD Feedback on

[AMD Public Use]

2

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

any version of the Specification, You agree AMD may freely use, reproduce, license, distribute, and
otherwise commercialize Your Feedback in any product, as well as has the right to sublicense third
parties to do the same. Further, You will not give AMD any Feedback that You may have reason to
believe is (i) subject to any patent, copyright or other intellectual property claim or right of any third
party; or (ii) subject to license terms which seek to require any product or intellectual property incor-
porating or derived from Feedback or any Product or other AMD intellectual property to be licensed
to or otherwise provided to any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited
to the U.S. Export Administration Regulations (“EAR”), (15 C.F.R. Sections 730 through 774), and
E.U. Council Regulation (EC) No 428/2009 of 5 May 2009. Further, pursuant to Section 740.6 of the
EAR, You hereby certifies that, except pursuant to a license granted by the United States Department
of Commerce Bureau of Industry and Security or as otherwise permitted pursuant to a License Excep-
tion under the U.S. Export Administration Regulations ("EAR"), You will not (1) export, re-export or
release to a national of a country in Country Groups D:1, E:1 or E:2 any restricted technology, soft-
ware, or source code You receive hereunder, or (2) export to Country Groups D:1, E:1 or E:2 the
direct product of such technology or software, if such foreign produced direct product is subject to
national security controls as identified on the Commerce Control List (currently found in Supplement
1 to Part 774 of EAR). For the most current Country Group listings, or for additional information
about the EAR or Your obligations under those regulations, please refer to the U.S. Bureau of Indus-
try and Security’s website at http://www.bis.doc.gov/.

7. If You are a part of the U.S. Government, then the Specification is provided with “RESTRICTED
RIGHTS” as set forth in subparagraphs (c) (1) and (2) of the Commercial Computer Software-
Restricted Rights clause at FAR 52.227-14 or subparagraph (c) (1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.277-7013, as applicable.

8. This Agreement is governed by the laws of the State of California without regard to its choice of
law principles. Any dispute involving it must be brought in a court having jurisdiction of such dispute
in Santa Clara County, California, and You waive any defenses and rights allowing the dispute to be
litigated elsewhere. If any part of this agreement is unenforceable, it will be considered modified to
the extent necessary to make it enforceable, and the remainder shall continue in effect. The failure of
AMD to enforce any rights granted hereunder or to take action against You in the event of any breach
hereunder shall not be deemed a waiver by AMD as to subsequent enforcement of rights or subse-
quent actions in the event of future breaches. This Agreement is the entire agreement between You
and AMD concerning the Specification; it may be changed only by a written document signed by
both You and an authorized representative of AMD.

[AMD Public Use]

AMD I/O Virtualization Technology
(IOMMU) Specification

Publication # 48882-PUB Revision: 3.10

Issue Date: February 2025

[AMD Public Use]

© 2011 – 2025 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While every
precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and
typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro
Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or
fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document.
Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between
the parties or in AMD's Standard Terms and Conditions of Sale.

Any unauthorized copying, alteration, distribution, transmission, performance, display or other use of this material is
prohibited.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes only and may be trademarks of their respective companies.
HyperTransport is a licensed trademark of the HyperTransport Technology Consortium

PCI Express, PCIe and PCI-X are registered trademarks of PCI-Special Interest Group (PCI-SIG).

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG ACTUAL OR DE FACTO
VIDEO AND/OR AUDIO STANDARDS IS EXPRESSLY PROHIBITED WITHOUT ALL NECESSARY LICENSES
UNDER APPLICABLE PATENTS. SUCH LICENSES MAY BE ACQUIRED FROM VARIOUS THIRD PARTIES
INCLUDING, BUT NOT LIMITED TO, IN THE MPEG PATENT PORTFOLIO, WHICH LICENSE IS AVAILABLE
FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E, GREENWOOD VILLAGE,
COLORADO 80111.

[AMD Public Use]

5

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Contents

Contents . 5

Figures . 9

Tables . 13

Revision History . 17

Preface .23

1 IOMMU Overview . 33
1.1 Summary of IOMMU Capabilities . 33
1.2 Usage Models . 35

1.2.1 Replacing the GART . 35
1.2.2 Replacing the Device Exclusion Vector Mechanism. 36
1.2.3 32-bit to 64-bit Legacy I/O Device Mapping . 36
1.2.4 User Mode Device Accesses . 37
1.2.5 Virtual Machine Guest Access to Devices. 37
1.2.6 Virtualizing the IOMMU . 38
1.2.7 Virtualized User Mode Device Accesses. 38

1.3 IOMMU Optional Features. 39
1.3.1 Two-level Translation for Guest and Host Address Spaces . 43
1.3.2 Enhanced Processor Page Table Compatibility . 45
1.3.3 Performance Features. 45
1.3.4 Address Translation Services for Guest Virtual Addresses. 47
1.3.5 Peripheral Page Request Support Compatible with PCI-SIG PRI. 48
1.3.6 Selecting Translation Tables in a Memory Transaction . 48
1.3.7 AMD64 Interrupt Virtualization(Guest Virtual APIC Interrupt Controller). 48
1.3.8 Enhanced Support for Access and Dirty Bits . 48
1.3.9 Guest I/O Protection . 49
1.3.10 SMI Filter. 49
1.3.11 Hardware Error Registers . 49
1.3.12 Hardware Accelerated Virtualized IOMMU (vIOMMU) . 49
1.3.13 Secure Nested Paging (SEV-SNP). 50

2 Architecture. 51
2.1 Behavior . 51

2.1.1 Normal Operation . 51
2.1.2 IOMMU Logical Topology . 53
2.1.3 IOMMU Event Reporting . 53
2.1.4 Special Conditions . 55
2.1.5 System Management Interrupt (SMI) Controls . 57

2.2 Data Structures . 60
2.2.1 Updating Shared Tables. 62
2.2.2 Device Table . 62
2.2.3 I/O Page Tables for Host Translations. 79
2.2.4 Sharing AMD64 Processor and IOMMU Page Tables—GPA-to-SPA. 88
2.2.5 Interrupt Remapping Tables . 89

[AMD Public Use]

6

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.2.6 I/O Page Tables for Guest Translations . 99
2.2.7 Guest and Nested Address Translation . 114
2.2.8 Guest Virtual APIC Table for Interrupt Virtualization . 119
2.2.9 Guest I/O Protection . 120

2.3 Starting the IOMMU. 120
2.3.1 Data Structure Initialization. 120
2.3.2 Making Guest Interrupt Virtualization Changes . 121

2.4 Commands . 122
2.4.1 COMPLETION_WAIT . 123
2.4.2 INVALIDATE_DEVTAB_ENTRY . 125
2.4.3 INVALIDATE_IOMMU_PAGES . 126
2.4.4 INVALIDATE_IOTLB_PAGES. 128
2.4.5 INVALIDATE_INTERRUPT_TABLE . 131
2.4.6 PREFETCH_IOMMU_PAGES. 131
2.4.7 COMPLETE_PPR_REQUEST . 134
2.4.8 INVALIDATE_IOMMU_ALL . 136
2.4.9 INSERT_GUEST_EVENT Command . 137
2.4.10 RESET_VMMIO Command . 137
2.4.11 IOMMU Ordering Rules . 138

2.5 Event Logging. 139
2.5.1 Event Log Restart Procedure . 141
2.5.2 ILLEGAL_DEV_TABLE_ENTRY Event . 150
2.5.3 IO_PAGE_FAULT Event . 152
2.5.4 DEV_TAB_HARDWARE_ERROR Event. 154
2.5.5 PAGE_TAB_HARDWARE_ERROR Event . 156
2.5.6 ILLEGAL_COMMAND_ERROR Event . 158
2.5.7 COMMAND_HARDWARE_ERROR Event . 159
2.5.8 IOTLB_INV_TIMEOUT Event . 160
2.5.9 INVALID_DEVICE_REQUEST Event . 161
2.5.10 INVALID_PPR_REQUEST Event . 163
2.5.11 EVENT_COUNTER_ZERO Event. 165
2.5.12 GUEST_EVENT_FAULT Event . 166
2.5.13 VIOMMU_HARDWARE_ERROR Event . 167
2.5.14 RMP_PAGE_FAULT Event . 168
2.5.15 RMP_HARDWARE_ERROR Event . 170
2.5.16 IOMMU Event Reporting . 172
2.5.17 Event Log Dual Buffering . 174

2.6 Peripheral Page Request (PPR) Logging . 175
2.6.1 PPR Log Dual Buffering . 177
2.6.2 Peripheral Page Request Log Restart Procedure . 178
2.6.3 Peripheral Page Request Entry. 179
2.6.4 PPR Log Overflow Protection . 181

2.7 Guest Virtual APIC (GA) Logging. 183
2.7.1 Guest vAPIC Virtual Interrupt Request Log . 184
2.7.2 Guest Virtual APIC Log Entry (Generic) . 187
2.7.3 Guest Virtual APIC Request Entry (GA_GUEST_NR) . 187
2.7.4 Guest Virtual APIC Log Restart Procedure. 188

[AMD Public Use]

7

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.8 IOMMU Interrupt Support . 188
2.9 Memory Address Routing and Control (MARC) . 189
2.10 vIOMMU . 190

2.10.1 vIOMMU Private Address Space . 190
2.10.2 vIOMMU MMIO Resources . 192
2.10.3 vIOMMU Event Logging . 193
2.10.4 vIOMMU Extended Interrupt Remapping. 193
2.10.5 vIOMMU and EOI Bus Cycle . 195

2.11 Secure ATS Support . 195
2.12 IOMMU Secure Nested Paging (SEV-SNP) Support. 195

2.12.1 SEV-SNP RMP Access Checks. 196
2.12.2 SEV-SNP Restrictions . 196
2.12.3 SEV-SNP Guest Virtual APIC Support. 197

3 Registers. 199
3.1 PCI Resources . 199

3.1.1 Accessing MSI Capability Block Registers. 199
3.2 IOMMU Base Capability Block Registers . 200
3.3 IOMMU Vendor Specific Capability Block Registers . 205
3.4 IOMMU MMIO Registers . 208

3.4.1 Control and Status Registers . 208
3.4.2 PPR Log Registers . 223
3.4.3 SMI Filter. 225
3.4.4 Guest Virtual APIC Log Registers . 226
3.4.5 Alternate PPR and Event Log Base Registers . 229
3.4.6 Device Table Segment [1–7] Base Address Registers. 231
3.4.7 Device-Specific Feature Registers. 232
3.4.8 MMIO Access to MSI Capability Block Registers . 234
3.4.9 Performance Optimization Control Register . 237
3.4.10 IOMMU x2APIC Control Register . 238
3.4.11 vIOMMU Status Register . 241
3.4.12 Memory Access and Routing (MARC) Registers . 241
3.4.13 Extended Feature 2 Register . 244
3.4.14 Reserved Register . 245
3.4.15 Command and Event Log Pointer Registers . 245
3.4.16 Command and Event Status Register. 248
3.4.17 PPR Log Head and Tail Pointer Registers. 251
3.4.18 Guest Virtual APIC Log Head and Tail Pointer Registers . 252
3.4.19 PPR Log B Head and Tail Pointer Registers . 253
3.4.20 Event Log B Head and Tail Pointer Registers . 254
3.4.21 PPR Log Overflow Protection Registers . 255
3.4.22 IOMMU Event Counter Registers . 257

3.5 IOMMU Virtual Function Controls MMIO Registers . 268
3.6 IOMMU Virtual Function MMIO Registers. 273

4 Implementation Considerations . 277
4.1 Caching and Invalidation Strategies . 277
4.2 IOMMU Topologies . 278
4.3 Issues Specific to the HyperTransport™ Architecture . 280

[AMD Public Use]

8

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

4.4 Chipset Specific Implementation Issues . 281
4.5 Software and Platform Firmware Implementation Issues. 281

5 I/O Virtualization ACPI Table . 283
5.1 IOMMU Control Flow . 284
5.2 I/O Virtualization Reporting Structure (IVRS). 284

5.2.1 IVRS Header Fields . 286
5.2.2 I/O Virtualization Definition Blocks . 287

5.3 I/O Virtualization Device Tree . 304
5.3.1 I/O Virtualization Device Tree Data Structure . 304

Index to Registers . 307

[AMD Public Use]

9

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figures

Figure 1: Example Platform Architecture .35

Figure 2: Nested Address Spaces .44

Figure 3: System Management Interrupt Address Format .58

Figure 4: IOMMU Data Structures .61

Figure 5: Example DeviceID Derived from Peripheral RequesterID .62

Figure 6: DeviceID Derived from Peripheral UnitID .63

Figure 7: Device Table Entry (DTE) Fields .65

Figure 8: I/O Page Table Entry Not Present (any level) .82

Figure 9: I/O Page Translation Entry (PTE), PR=1 .82

Figure 10: I/O Page Directory Entry (PDE), PR=1 .84

Figure 11: Address Translation Example with Skipped Level and 2-Mbyte Page 86

Figure 12: Address Translation Example with Page Size Larger than Default Size87

Figure 13: Sharing AMD64 and IOMMU Host Page Tables with Identical Addressing 89

Figure 14: Interrupt Remapping Table Lookup for Fixed and Arbitrated Interrupts91

Figure 15: Interrupt Remapping Table Entry - Basic Format .91

Figure 16: Bit Numbering of Virtual IRR in the Virtual APIC Backing Page 95

Figure 17: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=0 .95

Figure 18: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=1 .96

Figure 19: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=0 .98

Figure 20: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=1 .98

Figure 21: Guest CR3 Table, 1 Level. .101

Figure 22: AMD64 GCR3 Base Pointer Entry Format .102

Figure 23: Guest CR3 Table, 2 Level. .103

Figure 24: Guest CR3 Level-2 Base Table Pointer Format .104

Figure 25: AMD64 Long Mode 4-Kbyte Page Address Translation .105

Figure 26: AMD64 Long Mode 4-Kbyte PML5E Format .105

Figure 27: AMD64 Long Mode 4-Kbyte PML4E Format .106

Figure 28: AMD64 Long Mode 4-Kbyte PDPE Format .106

Figure 29: AMD64 Long Mode 4-Kbyte PDE Format .106

Figure 30: AMD64 Long Mode 4-Kbyte PTE Format. .106

Figure 31: AMD64 Long Mode 2-Mbyte Page Address Translation .108

Figure 32: AMD64 Long Mode 2-Mbyte PML5E Format .108

[AMD Public Use]

10

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Figure 33: AMD64 Long Mode 2-Mbyte PML4E Format .108

Figure 34: AMD64 Long Mode 2-Mbyte PDPE Format .108

Figure 35: AMD64 Long Mode 2-Mbyte PDE Format .109

Figure 36: AMD64 Long Mode 1-Gbyte Page Address Translation .110

Figure 37: AMD64 Long Mode 1-Gbyte PML5E Format .110

Figure 38: AMD64 Long Mode 1-Gbyte PML4E Format .111

Figure 39: AMD64 Long Mode 1-Gbyte PDPE Format .111

Figure 40: Complete GVA-to-SPA Address Translation. .113

Figure 41: PCIe® TLP PASID Prefix Payload Format .118

Figure 42: Command Buffer in System Memory. .122

Figure 43: Generic Command Buffer Entry Format .123

Figure 44: COMPLETION_WAIT Command Format .124

Figure 45: INVALIDATE_DEVTAB_ENTRY Command Format .125

Figure 46: INVALIDATE_IOMMU_PAGES Command Format .127

Figure 47: INVALIDATE_IOTLB_PAGES Command Format .128

Figure 48: INVALIDATE_INTERRUPT_TABLE Command Format .131

Figure 49: PREFETCH_IOMMU_PAGES Command Format .132

Figure 50: COMPLETE_PPR_REQUEST Command Format .135

Figure 51: INVALIDATE_IOMMU_ALL Command Format .136

Figure 52: Event Log in System Memory .140

Figure 53: Event Log State Diagram .142

Figure 54: Generic Event Log Buffer Entry. .142

Figure 55: ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry Format150

Figure 56: IO_PAGE_FAULT Event Log Buffer Entry Format .152

Figure 57: DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry Format 155

Figure 58: PAGE_TAB_HARDWARE_ERROR Event Log Buffer Entry Format 157

Figure 59: ILLEGAL_COMMAND_ERROR Event Log Buffer Entry Format159

Figure 60: COMMAND_HARDWARE_ERROR Event Log Buffer Entry Format159

Figure 61: IOTLB_INV_TIMEOUT Event Log Buffer Entry Format .160

Figure 62: INVALID_DEVICE_REQUEST Event Log Buffer Entry Format162

Figure 63: INVALID_PPR_REQUEST Event Log Buffer Entry Format, RX = 0163

Figure 64: INVALID_PPR_REQUEST Event Log Buffer Entry Format, RX = 1164

Figure 65: EVENT_COUNTER_ZERO Event Log Buffer Entry Format 165

Figure 66: GUEST_EVENT_FAULT Event Buffer Entry Format .166

[AMD Public Use]

11

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 67: VIOMMU_HARDWARE_ERROR Event Entry Format .167

Figure 68: RMP_PAGE_FAULT Event Log Buffer Entry Format .169

Figure 69: RMP_HARDWARE_ERROR Event Log Buffer Entry Format 171

Figure 70: Translation and Remapping Validation Sequence .173

Figure 71: Peripheral Page Request Log in System Memory .176

Figure 72: PPR Log State Diagram .179

Figure 73: Generic Peripheral Page Request Log Buffer Entry Format .179

Figure 74: PAGE_SERVICE_REQUEST PPR Log Buffer Entry Format 180

Figure 75: Guest vAPIC Log in System Memory .184

Figure 76: Guest Virtual APIC Log State Diagram .185

Figure 77: Generic Guest Virtual APIC Log Buffer Entry Format .187

Figure 78: GA_GUEST_NR Log Buffer Entry Format .187

Figure 79: IOMMU Private Address Map .191

Figure 80: IOMMU Virtual Function Control MMIO and IOMMU Virtual Function MMIO . . .193

Figure 81: Extended Interrupt Remapping Table. .194

Figure 82: Level-1 Interrupt Table Entry Format .194

Figure 83: IOMMU Counter Register Address Decode. .260

Figure 84: IOMMU in a Tunnel .279

Figure 85: IOMMU in a Peripheral Bus Bridge. .279

Figure 86: Hybrid IOMMU .280

Figure 87: Chained Hybrid IOMMU in a Large System .280

Figure 88: Example Platform Architecture .283

Figure 89: IVHD Type 10h IOMMU Feature Reporting Field Format .291

[AMD Public Use]

12

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

[AMD Public Use]

13

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Tables

Table 1: Bit Attribute Definitions .30

Table 2: Software-Visible Features. .41

Table 3: Special Address Controls (GPA) when MMIO Offset 01A0h[HTRangeIgnore]=0 . . .53

Table 4: System Management Interrupt Address Fields .58

Table 5: Feature Enablement for Address Translation .64

Table 6: Feature Enablement for Interrupt Remapping and Virtualization 64

Table 7: Device Table Entry (DTE) Field Definitions .66

Table 8: V, TV, and GV Fields in Device Table Entry .74

Table 9: IV and IntCtl Fields in Device Table Entry for Fixed and Arbitrated Interrupts74

Table 10: IV and Pass Fields in Device Table Entry for Selected Interrupts75

Table 11: GLX and Maximum Translatable PASID size .75

Table 12: Cache bit and U bit for ATS requests .76

Table 13: Registers Utilized to Allocate Device Table Segments .78

Table 14: Example Page Size Encodings .80

Table 15: Page Table Level Parameters .82

Table 16: I/O Page Table Entry Not Present Fields, PR=0. .82

Table 17: I/O Page Translation Entry (PTE) Fields, PR=1. .83

Table 18: I/O Page Directory Entry (PDE) Fields, PR=1 .85

Table 19: IOMMU Controls and Actions for Upstream Interrupts .90

Table 20: Interrupt Remapping Table Fields - Basic Format .91

Table 21: Interrupt Virtualization Controls for Upstream Interrupts .93

Table 22: IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=095

Table 23: IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=196

Table 24: Guest Address Translation Controls .99

Table 25: AMD64 Guest CR3 Level-1 Table Format .102

Table 26: AMD64 GCR3 Base Pointer Entry Fields .102

Table 27: Guest CR3 Level-2 Table Format. .103

Table 28: Guest CR3 Level-2 Base Table Pointer Fields .104

Table 29: IOMMU Interpretation of AMD64 Page Table Fields for 4-Kbyte Page Translation .106

Table 30: IOMMU Interpretation of AMD64 Page Table Fields for 2-Mbyte Page Translation.109

Table 31: IOMMU Interpretation of AMD64 Long Mode 1-Gbyte Page Table Fields111

Table 32: AMD64 Access Privilege Conversion Table for ATS Request117

[AMD Public Use]

14

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Table 33: PCIe® TLP Prefix Payload Fields .118

Table 34: COMPLETION_WAIT Fields .124

Table 35: INVALIDATE_DEV_TAB_ENTRY Fields .126

Table 36: INVALIDATE_IOMMU_PAGES Fields .127

Table 37: INVALIDATE_IOTLB_PAGES Fields. .128

Table 38: INVALIDATE_INTERRUPT_TABLE command Fields .131

Table 39: PREFETCH_IOMMU_PAGES Fields. .132

Table 40: COMPLETE_PPR_REQUEST Fields .135

Table 41: INVALIDATE_IOMMU_ALL Fields .137

Table 42: Event Type Summary .143

Table 43: ILLEGAL_DEV_TABLE_ENTRY Event Types .144

Table 44: IO_PAGE_FAULT Event Types .144

Table 45: DEV_TAB_HARDWARE_ERROR Event Types. .146

Table 46: PAGE_TAB_HARDWARE_ERROR Event Types .146

Table 47: COMMAND_HARDWARE_ERROR Event Types .146

Table 48: ILLEGAL_COMMAND_ERROR Event Types .147

Table 49: IOTLB_INV_TIMEOUT Event Types .147

Table 50: INVALID_DEVICE_REQUEST Event Types (Access) .148

Table 51: INVALID_DEVICE_REQUEST Event Types (Translation Request) 149

Table 52: INVALID_PPR_REQUEST Event Summary .149

Table 53: EVENT_COUNTER_ZERO Event Types .149

Table 54: RMP_PAGE_FAULT Event Types .150

Table 55: RMP_HARDWARE_ERROR Event Types .150

Table 56: ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry Fields150

Table 57: IO_PAGE_FAULT Event Log Buffer Entry Fields .152

Table 58: Event Log Type Field Encodings .154

Table 59: DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry Fields 155

Table 60: PAGE_TAB_HARDWARE_ERROR Event Log Buffer Entry Fields157

Table 61: ILLEGAL_COMMAND_ERROR Event Log Buffer Entry Fields159

Table 62: COMMAND_HARDWARE_ERROR Event Log Buffer Entry Fields.160

Table 63: IOTLB_INV_TIMEOUT Event Log Buffer Entry Fields .161

Table 64: INVALID_DEVICE_REQUEST Type Field Encodings. .161

Table 65: INVALID_DEVICE_REQUEST Event Log Buffer Entry Fields162

Table 66: INVALID_PPR_REQUEST Event Log Buffer Entry Fields.164

[AMD Public Use]

15

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Table 67: EVENT_COUNTER_ZERO Event Log Buffer Entry Fields 166

Table 68: Guest_Event_Fault Event Log Buffer Entry Fields .166

Table 69: VIOMMU_HARDWARE_ERROR Event Entry Fields .167

Table 70: RMP_PAGE_FAULT Event Log Buffer Entry Fields. .169

Table 71: RMP_HARDWARE_ERROR Event Log Buffer Entry Fields171

Table 72: DualEventLogSup Field Capability Levels .174

Table 73: DualEventLogEn Field Operation Levels. .175

Table 74: PAGE_SERVICE_REQUEST PPR Log Buffer Entry Fields180

Table 75: GA_GUEST_NR Log Buffer Entry Fields. .188

Table 76: Pinned Memory Buffer Regions .192

Table 77: Level-1 Interrupt Table Entry Format .195

Table 78: SMI Filter Register MMIO Offset Assignments .226

Table 79: Device Table Segment Base Address Registers; Offsets and Maximum Size Value. .231

Table 80: MARC Aperture Register Offsets (hexadecimal). .242

Table 81: Counter Bank Addressing (MMIO) .260

Table 82: Architectural Counter Input Group, CAC = 0b .263

Table 83: I/O Virtualization Reporting Structure (IVRS) .285

Table 84: IVRS Fields. .286

Table 85: IVRS Revision Field .286

Table 86: IVRS IVinfo Field .287

Table 87: I/O Virtualization Hardware Definition (IVHD) Block Generic Format288

Table 88: I/O Virtualization Hardware Definition (IVHD) Type 10h .290

Table 89: IVHD Type 10h Field Definitions .290

Table 90: IVHD Flags Field .291

Table 91: IVHD IOMMU Info Field .291

Table 92: IVHD IOMMU Feature Reporting Field .291

Table 93: I/O Virtualization Hardware Definition (IVHD) Type 11h .293

Table 94: IVHD Type 11h Field Definitions .293

Table 95: IVHD Flags Field .294

Table 96: IVHD Type 11h IOMMU Attributes .294

Table 97: I/O Virtualization Hardware Definition (IVHD) Type 40h Fields295

Table 98: IVHD Type 40h Field Definitions .295

Table 99: IVHD Type 40 Flags Field .296

Table 100: IVHD Type 40h IOMMU Attributes .297

[AMD Public Use]

16

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Table 101: IVHD Device Entry Length Based on Type .297

Table 102: IVHD Device Entry Fields (4-byte) .298

Table 103: IVHD Device Entry Type Codes (4-byte) .298

Table 104: IVHD Device Table Entry DTE Setting .298

Table 105: IVHD Device Entry Type Codes (8-byte) .299

Table 106: IVHD Device Entry Extended DTE Setting Field .300

Table 107: IVHD Special Device Entry Variety Field .301

Table 108: Device Entry Type F0h Fields .301

Table 109: IVMD Types 20h–22h Format .303

Table 110: IVMD Types 20h–22h Fields .303

Table 111: IVMD Flags Definitions .304

[AMD Public Use]

17

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Revision History
Date Revision Description

February 2025 3.10 • Updated “Related Documents” on page 30.
• Added features to Table 2, “Software-Visible Features” on page 41.

Section 2:
• Updated Section 2.1.2 [IOMMU Logical Topology].
• Added note to Section 2.2.2 [Device Table].
• Updated Section 2.2.5 [Interrupt Remapping Tables], including Table 19, “IOMMU

Controls and Actions for Upstream Interrupts” on page 90 and a correction in Table 23,
“IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=1” on page 96.

• Updated Section 2.2.5.2 [Interrupt Virtualization Tables with Guest Virtual APIC
Enabled].

• Updated bit 21 in Figure 41, “PCIe® TLP PASID Prefix Payload Format” on page 118.
• Updated bit 21 in Table 77, “Level-1 Interrupt Table Entry Format” on page 195.

Section 3:
• In “IOMMU Control Register” on page 211, updated Bits 63:61, 45, and 44:43.
• Updated “IOMMU Extended Feature 2 Register” on page 244.
• Added “Guest Miscellaneous Control Register” on page 269.

Section 5:
• Updated bit 0 in Table 96, “IVHD Type 11h IOMMU Attributes” on page 294.
• Updated bit 0 in Table 100, “IVHD Type 40h IOMMU Attributes” on page 297.
• Updated bit 3 in Table 104, “IVHD Device Table Entry DTE Setting” on page 298.

October 2023 3.09 • Updated note in Section 2.4.2 [INVALIDATE_DEVTAB_ENTRY].

October 2023 3.08 • Added to “Related Documents” on page 30.

Section 1:
• Added “AMD Tiered Memory Page Migration” to Table 2.

Section 2:
• Updated bits 58:52 in Table 17, “I/O Page Translation Entry (PTE) Fields, PR=1” on

page 83 for Page Migration State.
• Updated Section 2.2.5.2 [Interrupt Virtualization Tables with Guest Virtual APIC

Enabled].
• Updated Section 2.3.2 [Making Guest Interrupt Virtualization Changes].
• Updated Section 2.4.2 [INVALIDATE_DEVTAB_ENTRY] with a new requirement.
• Corrected notes in Table 76, “Pinned Memory Buffer Regions” on page 192 for mapping

table references.

Section 3:
• In MMIO Offset 0018h, updated Bit 56.
• In MMIO Offset 01A0h, updated Bit 2.

[AMD Public Use]

18

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

October 2022 3.07 • Updated “Related Documents” on page 30.

Section 1:
• Added features to Table 2.

Section 2:
• Updated Figure 7, “Device Table Entry (DTE) Fields” on page 65.
• Updated Table 7, “Device Table Entry (DTE) Field Definitions” on page 66.
• Updated bit 5 in Figure 18, “IRTE Fields with Guest Virtual APIC,

IRTE[GuestMode]=1” on page 96 and Table 23, “IRTE Field Descriptions with Guest
Virtual APIC, IRTE[GuestMode]=1” on page 96.

• Updated bit 5 in Figure 20, “IRTE Fields with Guest Virtual APIC,
IRTE[GuestMode]=1” on page 98.

• Added Section 2.2.5.4, “Guest APIC Physical Processor Interrupt” on page 99.
• Updated Section 2.2.6.3, “Guest CR3 Table” on page 100, including Figure 21,

Figure 23.
• Added Section 2.2.6.4, “Support for AMD64 Level 5 (PML5E) Page Table” on

page 105.
• Updated Section 2.2.6.5, “AMD64 4-Kbyte Page Translation” on page 105 for PML5E,

including Figure 25, added Figure 26, and Table 29.
• Updated Section 2.2.6.6, “AMD64 2-Mbyte Page Translation” on page 107 for PML5E,

including Figure 31, added Figure 32, and Table 30.
• Updated Section 2.2.6.7, “AMD64 1-Gbyte Page Translation” on page 110 for PML5E,

including Figure 36, added Figure 37, and Table 31.
• Updated Figure 40, “Complete GVA-to-SPA Address Translation” on page 113.
• Updated Section 2.10.1.1, “vIOMMU Backing Storage Memory” on page 191.
• Updated Section 2.12.2.4, “SEV-SNP Page Mode Restrictions” on page 197.

(continued)

October 2022 3.07 (continued)

Section 3:
• In Capability Offset 10h, updated bit description for Bits 7:5.
• In MMIO Offset 0018h, updated Bits 60, 58, and 55.
• In MMIO Offset 0030h, updated Bits 13:12 and 5.
• Updated MMIO Offset 01A0h.
• Added VFCntlMMIO Offset {16’b[GuestID], 6’b01_1000}.
• Updated VFCntlMMIO Offset {16’b[GuestID], 6’b10_0000}.
• Updated VFCntlMMIO Offset {16’b[GuestID], 6’b10_1000}.
• Updated VFCntlMMIO Offset {16’b[GuestID], 6’b11_0000}.
• Added VFCntlMMIO Offset {16’b[GuestID], 6’b11_1000}.

Section 5:
• Updated Table 109, “IVMD Types 20h–22h Format” on page 303.
• Updated Table 110, “IVMD Types 20h–22h Fields” on page 303.

Date Revision Description

[AMD Public Use]

19

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

March 2021 3.06 Added terms in “Definitions” on page 24.
Added items to “Related Documents” on page 30.

Section 1:

• Updated Figure 1, “Example Platform Architecture” on page 35.
• Updated Section 1.3, “IOMMU Optional Features” on page 39.
• Added rows to Table 2, “Software-Visible Features” on page 41 and a new column to

indicate specification rev level (replacing Table 2, “Feature Support by Specification Rev
Level.”

• Added Section 1.3.12, “Hardware Accelerated Virtualized IOMMU (vIOMMU)” on
page 49.

• Added Section 1.3.13, “Secure Nested Paging (SEV-SNP)” on page 50.

Section 2:

• Updated Figure 4, “IOMMU Data Structures” on page 61.
• Updated Figure 7, “Device Table Entry (DTE) Fields” on page 65.
• Updated Table 7, “Device Table Entry (DTE) Field Definitions” on page 66.
• Updated Figure 18, “IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=1” on

page 96.
• Updated Table 23, “IRTE Field Descriptions with Guest Virtual APIC,

IRTE[GuestMode]=1” on page 96.
• Updated Section 2.4.8, “INVALIDATE_IOMMU_ALL” on page 136.
• Added Section 2.4.9, “INSERT_GUEST_EVENT Command” on page 137.
• Added Section 2.4.9, “RESET_VMMIO Command” on page 137.
• Added Table 54, “RMP_PAGE_FAULT Event Types” on page 150.
• Added Table 55, “RMP_HARDWARE_ERROR Event Types” on page 150.
• Updated Figure 55, “ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry

Format” on page 150.
• Updated Table 56, “ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry Fields”

on page 150.

(continued)

Date Revision Description

[AMD Public Use]

20

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

March 2021 3.06 (continued)

Section 2:

• Updated Figure 56, “IO_PAGE_FAULT Event Log Buffer Entry Format” on page 152.
• Updated Table 57, “IO_PAGE_FAULT Event Log Buffer Entry Fields” on page 152.
• Updated Table 58, “Event Log Type Field Encodings” on page 154.
• Added Figure 57, “DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry

Format” on page 155.
• Updated Table 59, “DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry Fields”

on page 155.
• Updated Figure 58, “PAGE_TAB_HARDWARE_ERROR Event Log Buffer Entry

Format” on page 157.
• Updated Table 60, “PAGE_TAB_HARDWARE_ERROR Event Log Buffer Entry

Fields” on page 157.
• Added Section 2.5.13, “VIOMMU_HARDWARE_ERROR Event” on page 167.
• Added Section 2.5.14, “RMP_PAGE_FAULT Event” on page 168.
• Added Section 2.5.15, “RMP_HARDWARE_ERROR Event” on page 170.
• Added Section 2.10, “vIOMMU” on page 190.
• Added Section 2.11, “Secure ATS Support” on page 195.
• Added Section 2.12, “IOMMU Secure Nested Paging (SEV-SNP) Support” on page 195.
• Updated Figure 4, “IOMMU Data Structures” on page 61.
• Updated Figure 7, “Device Table Entry (DTE) Fields” on page 65.
• Updated Table 7, “Device Table Entry (DTE) Field Definitions” on page 66.
• Updated Figure 18, “IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=1” on

page 96.
• Updated Table 23, “IRTE Field Descriptions with Guest Virtual APIC,

IRTE[GuestMode]=1” on page 96.
• Updated Section 2.4.8, “INVALIDATE_IOMMU_ALL” on page 136.
• Added Section 2.4.9, “INSERT_GUEST_EVENT Command” on page 137.
• Added Section 2.4.9, “RESET_VMMIO Command” on page 137.
• Added Table 54, “RMP_PAGE_FAULT Event Types” on page 150.
• Added Table 55, “RMP_HARDWARE_ERROR Event Types” on page 150.
• Updated Figure 55, “ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry

Format” on page 150.
• Updated Table 56, “ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry Fields”

on page 150.
• Updated Figure 56, “IO_PAGE_FAULT Event Log Buffer Entry Format” on page 152.
• Updated Table 57, “IO_PAGE_FAULT Event Log Buffer Entry Fields” on page 152.
• Updated Table 58, “Event Log Type Field Encodings” on page 154.
• Added Figure 57, “DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry

Format” on page 155.
• Updated Table 59, “DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry Fields”

on page 155.
• Updated Figure 58, “PAGE_TAB_HARDWARE_ERROR Event Log Buffer Entry

Format” on page 157.

(continued)

Date Revision Description

[AMD Public Use]

21

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

March 2021 3.06 (continued)

Section 2:

• Updated Table 60, “PAGE_TAB_HARDWARE_ERROR Event Log Buffer Entry
Fields” on page 157.

• Added Section 2.5.13, “VIOMMU_HARDWARE_ERROR Event” on page 167.
• Added Section 2.5.14, “RMP_PAGE_FAULT Event” on page 168.
• Added Section 2.5.15, “RMP_HARDWARE_ERROR Event” on page 170.
• Added Section 2.10, “vIOMMU” on page 190.
• Added Section 2.11, “Secure ATS Support” on page 195.
• Added Section 2.12, “IOMMU Secure Nested Paging (SEV-SNP) Support” on page 195.

Section 3:

• Added Section 3.3, “IOMMU Vendor Specific Capability Block Registers” on page 205.
• Updated MMIO Offset 0018h, “IOMMU Control Register” on page 211.
• Updated MMIO Offset 0020h, “IOMMU Exclusion Base Register / Completion Store

Base Register” on page 217.
• Updated MMIO Offset 0028h, “IOMMU Exclusion Range Limit Register / Completion

Store Limit Register” on page 218.
• Updated MMIO Offset 0030h, “IOMMU Extended Feature Register” on page 219.
• Added MMIO Offset 0x190h, “vIOMMU Status Register” on page 241.
• Added MMIO Offset 01A0h, “IOMMU Extended Feature 2 Register” on page 244.
• Added Section 3.5, “IOMMU Virtual Function Controls MMIO Registers” on page 268.
• Added Section 3.6, “IOMMU Virtual Function MMIO Registers” on page 273.

Section 5:

• Updated Table 93, “I/O Virtualization Hardware Definition (IVHD) Type 11h” on
page 293 (added EFR Register Image 2).

• Updated Table 94, “IVHD Type 11h Field Definitions” on page 293 (added EFR
Register Image 2).

• Updated Table 98, “IVHD Type 40h Field Definitions” on page 295 (added EFR
Register Image 2).

January 2020 3.05 Incorporated updates in Chapters 1-5.

December
2016

3.00 2nd Public Release

January 2015 2.62 Public Release

Date Revision Description

[AMD Public Use]

22

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

[AMD Public Use]

23

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Preface

About this Document

This document describes AMD I/O Virtualization Technology. AMD I/O Virtualization Technology is
embodied in the system-level function called the I/O Memory Management Unit (IOMMU).

Intended Audience

This document provides the IOMMU behavioral definition and associated design notes. It is intended
for the use of system designers, chipset designers and programmers involved in the development of
OS kernel software and drivers, Hypervisors and Firmware for AMD products using the x86/AMD64
microprocessor architecture. The intended user should have previous experience in personal com-
puter design and the system architecture of the AMD target platform See “Related Documents” on
page 30 for a list of references.

Organization
• Chapter 1 “IOMMU Overview” on page 33 provides an introduction to AMD I/O Virtualization

Technology and the IOMMU.

• Chapter 2 “Architecture” on page 51 describes the operation of the IOMMU and the registers and
system memory data structures that control its behavior.

• Chapter 3 “Registers” on page 199 shows the format of the IOMMU registers and describes the
data fields within each register.

• Chapter 4 “Implementation Considerations” on page 277 discusses design and implementation
issues that are primarily of concern to IOMMU implementers.

• Chapter 5 “I/O Virtualization ACPI Table” on page 283 defines the ACPI tables used to describe
the platform configuration information for IOMMU control fields.

• The appendix “Index to Registers” on page 307 provides an index to all the IOMMU register
definitions.

[AMD Public Use]

24

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Conventions and Definitions

Notation

• 128
Numbers without an alpha suffix are decimal unless the context indicates otherwise.

• 1011b
A binary value—in this example, a 4-bit value.

• F0EA_0B02h
A hexadecimal value. Underscore characters may be inserted to improve readability.

• CR0–CR4
A register range, from register CR0 through CR4, inclusive, with the low-order register first.

• CR0[PE]
Notation for referring to a field within a register—in this case, the PE field of the CR0 register.

• 7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

Definitions
• Accessed bit (A). A bit in the page table that indicates the corresponding memory has been read

or written. Usually set to 1 by hardware.

• ACPI. Advanced Configuration and Power Interface, a specification of industry-standard
interfaces enabling OS-directed configuration and other management.

• APIC. Advanced programmable interrupt controller (see specifications under the model numbers
82093AA and 82489DX).

• ARI. Alternative Routing Information is a PCI-SIG specification that allows a PCI Device to
have more than eight PCI Functions but no more than 256.

• ATS. Address translation service, a PCI-SIG specification, allows a PCI peripheral to request
virtual-to-physical address translation from an IOMMU or TA. The resulting translation may be
stored in an IOTLB. ATS is optional on a peripheral. This specification requires the Address
Translation Services 1.1 Specification or later. See http://www.pcisig.com/specifications/iov/ats/ .

• AVIC. The AMD Advanced Virtual Interrupt Controller. See “Advanced Virtual Interrupt
Controller” in AMD64 Architecture Programmer’s Manual, Volume 2: System Programming,
order #24593 (APM2), Chapter 15. AVIC is an implementation of a guest virtual APIC. Allows
the processor and the IOMMU to coordinate the delivery of interrupts directly to running guest
VMs.

• BAR. PCI-defined base address register.

• BDF. PCI bus I/O device identifier; concatenation of the bus, device, and function numbers. Also
called DeviceID within this document.

• BIOS. Refers to the platform firmware (Basic Input/Output Services). See also, UEFI.

[AMD Public Use]

25

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

• Bounce Buffer. A buffer located in low system memory for DMA traffic from devices that do not
support 64-bit addressing. The OS copies the DMA data to or from the buffer to the real buffer in
high memory used by the driver.

• Cold Reset. A reset generated by removing and reapplying power to the device.

• Dirty bit (D). A bit in the page table that indicates the corresponding memory has been written.
Usually set to 1 by hardware.

• Device Exclusion Vector (DEV). Contiguous arrays of bits in physical memory. Each bit in the
DEV table represents a 4KB page of physical memory (including system memory and MMIO).
The DEV table is packed as follows: bit[0] of byte 0 controls the first 4 Kbytes of physical
memory; bit[1] of byte 0 controls the second 4 Kbytes of physical memory; etc.

• DeviceID. A 16 bit device identification number consisting of the Bus number, Device number
and Function number, also named BDF or BDFID. Used by an IOMMU to select the nested
mapping tables for an address translation or interrupt remapping operation.

• Device Processing Complex. A computational unit on the peripheral such as a dedicated function
(e.g., NIC, encryption engine), a graphics processing unit (GPU), or an accelerated computing
element (AC)

• Device Table. A table in system memory that maps DeviceIDs to DomainIDs and page table root
pointers.

• Device Table Entry (DTE). An entry in the Device Table.

• Direct Memory Access (DMA). A feature that enables a peripheral to access memory without
intervention by the central processor.

• Device Virtual Address (DVA). The untranslated address emitted by a device in a DMA
transaction. This address can correspond to the system physical address if the device is excluded
from translation by the IOMMU or to the GPA if the device is owned and programmed by a guest
operating system.

• Domain. See Protection Domain.

• DomainID. A 16-bit number chosen by software to identify a domain.

• Downstream. Traffic going from the Root Complex to the device Endpoint.

• GART. Graphics Address Remapping Table.

• GPU. Graphical processing unit, usually used for graphics-specific computation.

• GPGPU. A GPU used for general-purpose computation.

• Guest. An application or OS run by the host in its own virtual environment.

• Guest address translation. Translation for GVA to GPA. May be serviced by an IOMMU or by a
private MMU on the peripheral.

• Guest Physical Address (GPA). The x86-canonical virtual address used by a guest operating
system in a VM. A GPA is created by using the guest page tables to translate a guest virtual
address. The GPA may be further translated to a System Physical Address.

• Guest Virtual Address (GVA). The virtual addresses used by a guest application. A GVA may
be translated into a Guest Physical Address. Guest virtual addresses are treated as canonical x86

[AMD Public Use]

26

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

addresses.

• Guest Virtual APIC. Optionally the IOMMU can support the delivery of interrupts to guest VMs
without hypervisor intervention. The guest APIC is described in the AMD Virtual Interrupt
Controller Specification, Revision 1.0 or newer.

• Host Data Path (HDP). A functional unit that can convert CPU linear addressing to GPU-style
tiled or rectangular addressing for improved performance. Often found in advanced graphics
processing peripherals.

• High memory. In the x86 platform architecture, system memory located at an address equal to or
greater than 4 Gbytes.

• Host. The system software layer responsible for running guests. See also Nested paging and
Nested address translation.

• Host Physical Address (HPA). The Host Physical Address is the physical address the Host
system hardware uses to access a physical resource (memory or MMIO register). The Host
Physical Address range is typically managed by an Operating System or a Hypervisor in
virtualized environments and in most systems identical with the System Physical Address.

• Hypervisor. A Hypervisor (HV) is the controlling software for a computer. It manages the
physical hardware and VMs to allow multiple operating systems to run concurrently on a
computer system.

• IOMMU. Refers to the I/O Memory Management Unit defined by this specification.

• IOTLB. I/O Translation Look-aside Buffer. A buffer located in a peripheral device that holds a
pretranslated address. Sometimes called a “remote IOTLB.” An example of an IOTLB is the
PCIe® Address Translation Cache.

• IRTE. Interrupt Remapping Table Entry

• IVHD. I/O Virtualization Hardware Definition block, an ACPI table defined in Section 5.2.2.1
[I/O Virtualization Hardware Definition (IVHD) Block].

• IVMD. I/O Virtualization Memory Definition block, an ACPI table defined in Section 5.2.2.2
[I/O Virtualization Memory Definition (IVMD) Block].

• IVRS. I/O Virtualization Reporting Structure block, an ACPI table defined in Section 5.2 [I/O
Virtualization Reporting Structure (IVRS)].

• LMA. Local Memory Address; corresponds to the physical address space used on the peripheral
to access on-board or private memory. In some peripherals, aperture hardware maps some or all of
the local memory address space into the system physical address space. The aperture hardware is
usually managed by a device driver in an operating system.

• Local Memory. Memory on the peripheral that is typically accessed more quickly than system
memory and is usually not coherent with system memory. Part of the local memory may be
addressable from the CPU (called "public") and part may be inaccessible from the CPU (called
"private"). An aperture mechanism is commonly used to select the portion of local memory that is
public.

• Local Memory Protection Map. A hardware component that enforces the separation of virtual
machine contexts within the local memory of a peripheral.

[AMD Public Use]

27

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

• Low memory. In the x86 platform architecture, system memory located below 4 Gbytes.

• Master-Abort. A PCI termination mechanism that allows a master to terminate a transaction
when no target responds.

• Memory Address Routing Controls (MARC). MARC is a system that specifies a defined
apature for a guest assigned real-time capable device with low-latency access requirements to a
dedicate4d physical memory range that is under control of the Hypervisor. Examples for guest-
assigned devices that require a low-latency access path to system memory are display scanout
engines or framebuffer capture devices.

• MMIO. Memory Mapped I/O. Read or write access to memory mapped resources provided by
devices.

• MMU. Memory Management Unit.

• Message Signalled Interrupt (MSI). An interrupt that is signalled by generating a posted write
to a system-defined physical address.

• Nested address translation. Translation for GPA to SPA. May be serviced directly by an
IOMMU or by a remote IOTLB. Use of an IOTLB requires ATS and/or PRI.

• Nested paging. An optional feature in AMD64 processors, the nested paging feature provides for
two levels of address translation, thus eliminating the need for the virtual machine manager to
maintain shadow page tables. See AMD64 Architecture Programmer’s Manual, Volume 2: System
Programming, order #24593 (APM2).

• NW. A PCI-SIG term (bit) used to signal lack of intent to perform write operations.

• NX: No-execute. Page table entry (PTE) field indicating that program code should not be
executed from the referenced page.

• Page Tables. A table structure in main memory used to translate an address from one
representation to an alternate representation.

• PASID. The Process Address Space ID used to identify the application address space within a
x86-canonical guest virtual machine. It is used on a peripheral to isolate concurrent contexts
residing in shared local memory. Together, PASID and DeviceID uniquely identify an application
address space. See PASID TLP prefix.

• PASID TLP prefix. The IOMMU requires that a virtual address with a PASID carry the PASID
value using the PASID TLP prefix. See also PASID and TLP. See the PCI-SIG PASID TLP Prefix
ECN specification.

• PCI, PCI-SIG, PCIe®, PCI-X®. The PCI-SIG is an industry standards body that defines I/O
connection technology, including PCI, PCI-X, and PCIe. See http://www.pcisig.com/home for
more information.

• PDE. Page directory entry for address translation (see example in Figure 10 on page 84).

• Pinned memory. Memory pages that are to be maintained in physical memory all the time.
Pinning a memory page prevents the page management software from using it for other purposes.
A memory page must typically be pinned before DMA starts and may be unpinned when DMA
completes.

[AMD Public Use]

28

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

• Platform firmware. The firmware or software that controls startup and configuration of the
platform. Platform firmware is commonly implemented as BIOS or UEFI.

• Platform Security Processor (PSP). Also referred to as AMD Secure Processor (AMD-SP).
Exposes a set of functions to the hypervisor for guest lifecycle management of SEV and SNP-
enabled guests.

• PPR. Peripheral Page Request. When the IOMMU receives a valid PRI request, it creates a PPR
message to request changes to the virtual address space.

• PR, P. Present. Page table entry (PTE) field indicating that the page table or physical page pointed
to is currently loaded in system memory.

• Pretranslated address. An address that has been translated to an SPA by a peripheral with an
IOTLB.

• Page Request Interface (PRI). The Page Request Interface is a PCI-SIG specification that
defines how a peripheral requests memory management services from a host OS or hypervisor
(e.g., page fault service for the peripheral). PRI is optional on a peripheral, but if PRI is
implemented, ATS is required.

• Private MMU, Device MMU, or Device Page Tables. A peripheral-specific mechanism to
translate addresses generated on the peripheral. In the simplest case, it generates a single bit to
indicate the input address is an access to peripheral local memory or to system memory. When
present, the private MMU, Device MMU, or Device Page Tables provides guest address
translation. On a GPU, a private MMU, Device MMU, or Device Page Tables is often referred to
as the VM component of the memory controller.

• Protection Domain. A set of address mappings and access rights that can be shared by multiple
devices.

• PSP. See Platform Security Processor.

• PTE. Page Table Entry. A page table translation entry controls virtual-to-physical address
translation and memory page access (see example in Figure 9 on page 82).

• Reserved. A register field designated as reserved requires special handling by software. Reserved
fields in writable registers must be written with all zeros. When read, software cannot rely on the
value returned.

• Reverse Map Table (RMP). An SEV-SNP data structure used to support additional security
checks on memory accesses. For more details, refer to “Secure Nested Paging (SEV-SNP)” in
AMD64 Architecture Programmer’s Manual, Volume 2: System Programming, order #24593
(APM2).

• Secure Encrypted Virtualization (SEV). A feature that allows the memory contents of a virtual
machine (VM) to be transparently encrypted with a key unique to the VM.

• Secure Nested Paging (SEV-SNP). SNP provides integrity protection of VM memory to help
prevent hypervisor-based attacks that rely on guest data corruption, aliasing, replay, and various
other attack vectors.

• System Physical Address (SPA). The address directly used to address system memory. Under
SVM, this is also known as the host physical address. See HPA.

[AMD Public Use]

29

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

• System software. Privileged software that manages the hardware resources of a system and
controls access to these resources by lesser privileged software. In a non-virtualized environment,
the operating system is system software. In a virtualized environment, the hypervisor (HV) is
system software.

• TA. Translation Agent is a PCI-SIG term to refer to the IOMMU table walker.

• Target-Abort. A PCI termination mechanism that allows a target to terminate a transaction in
which a fatal error has occurred, or to which the target will never be able to respond.

• TLB. Translation Look-aside Buffer is a cache of address translation information usually
implemented within an MMU to improve translation speed.

• TLP. Transaction Layer Packet is a PCIe term for non-control packets. The TLP packet may have
a prefix.

• UEFI. Refers to the “Unified Extensible Firmware Interface” specification for platform firmware.
See http://www.uefi.org/home/ . See also BIOS.

• Untranslated address. A virtual address (GVA or GPA) issued by a peripheral that will be
translated to an SPA by the IOMMU. The handling of an untranslated address on a peripheral is
outside the scope of this specification.

• Upstream. Traffic going from the device Endpoint to the Root Complex.

• User, U/S, User/Supervisor level. The IOMMU can provide privilege-level information to a
peripheral. The value 0b means supervisor level access is allowed, but user level is not; 1b means
user and supervisor access are allowed. The terms User and U/S are used, depending on the
context.

• VM. A virtual machine is created and managed by a hypervisor so that multiple virtual machines
can share a single hardware system and run independent operating system instances.

[AMD Public Use]

30

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Bit Attributes

All bit attributes used in this specification are defined in Table 1. These attributes apply to register
definitions, Device Table entries, page table entries, Command Buffer entries and Event Log entries.

Related Documents
• AMD64 Architecture Programmer’s Manual, Volume 1: Application Programming, order# 24592

(APM1)

• AMD64 Architecture Programmer’s Manual, Volume 2: System Programming, order# 24593
(APM2)

• AMD64 Architecture Programmer’s Manual, Volume 3: General-Purpose and System
Instructions, order# 24594 (APM3)

• AMD64 Architecture Programmer’s Manual, Volume 4: 128-Bit and 256-Bit Media Instructions,
order# 26568 (APM4)

Table 1: Bit Attribute Definitions

Attribute Description

HwInit Hardware Initialized: Register fields are initialized by firmware or hardware mecha-
nisms such as pin strapping or serial EEPROM. Fields are read-only after initialization
and can only be reset (or write-once by firmware) with a cold reset.

Ignored
Ign

Ignored or Ign: For an IOMMU register, the state of the field is ignored by the IOMMU,
writes may be discarded and reads return undefined results. For a memory location, the
contents of the field is ignored by the IOMMU when read, but the value is preserved
when the memory location is written by the IOMMU. Note that some ignored fields may
be used by other system components (e.g., a memory field in a page table entry that is
ignored by the IOMMU may be used by the processor).

RO Read-only register: Register fields are read-only and cannot be altered by software.

RW Read-Write register: Register fields are read-write and may be either set or cleared by
software to the desired state.

RW1C Read-only status, Write-1-to-clear status register: Register bits indicate status when
read, a set bit indicating a status event may be cleared by writing a 1. Writing a 0 to
RW1C bits has no effect.

RW1S Write-1-to-set register: Register bits indicate status of an operation when read, setting
the bit initiates the operation. Hardware clears the bit when the operation completes.
Writing a 0 to RW1S bits has no effect.

Reserved
Resv
Res

Reserved, Resv, or Res: Reserved for future implementations. Reserved fields in a regis-
ter must be implemented as read-only zero. Reserved fields in a memory location must be
zero.

Unused
Un

Unused or Un: Field is not used by hardware. Software is allowed to use the field for its
own purposes.

[AMD Public Use]

31

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

• AMD64 Architecture Programmer’s Manual, Volume 5: 64-Bit Media and x87 Floating-Point
Instructions, order# 26569 (APM5)

• SEV Secure Nested Paging Firmware ABI Specification, order# 56860

• AMD Tiered Memory Page Migration Operations Guide, order# 58151

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-
docs/specifications/58151_0_51-PUB.pdf

• SNP-WP: “AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and More,”
January, 2020.
URL: https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-
papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

• PCI Specification "PCI Express® Base Specification, Revision 6.x."
URL: https://members.pcisig.com/wg/PCI-SIG/document/20590

• Advanced Configuration and Power Interface Specification, Revision 6.4, January 2021.
URL: https://uefi.org/specifications

• “Compute Express Link (CXL) Specification Revision 3.0.”
URL: https://members.computeexpresslink.org/wg/CXL/document/3211

[AMD Public Use]

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://members.computeexpresslink.org/wg/CXL/document/3211
https://uefi.org/specifications
https://members.pcisig.com/wg/PCI-SIG/document/20590
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/58151_0_51-PUB.pdf

32

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

[AMD Public Use]

IOMMU Overview 33

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

1 IOMMU Overview

This chapter provides an overview of the capabilities of the IOMMU and presents several usage mod-
els. The detailed architecture of the IOMMU is discussed in Chapter 2, "Architecture".

The I/O Memory Management Unit (IOMMU) extends the AMD64 system architecture by adding
support for address translation and system memory access protection on DMA transfers from periph-
eral devices. IOMMU also helps filter and remap interrupts from peripheral devices.

The IOMMU enables several significant system-level enhancements:

• Legacy 32-bit I/O device support on 64-bit systems (generally without requiring bounce buffers
and expensive memory copies).

• More secure user-level application access to selected I/O devices.
• More secure virtual machine guest operating system access to selected I/O devices.

The IOMMU can be used to:

• Replace the existing Graphics Address Remapping Table (GART) mechanism.
• Remap addresses above 4GB for I/O devices that do not support 64-bit addressing.
• Allow a guest OS running on a virtual machine to have direct, assigned control of a device.
• Provide page granularity control of device access to system memory.
• Allow a device direct access to user space I/O.
• Allow direct delivery of interrupts to a guest operating system.
• Filter and remap interrupts.
• Share process virtual address space with selected peripheral devices.
• Isolate/sandbox devices to prevent malicious DMA accessing security sensitive OS and user data

in memory.
• Enforce OS security policies for data access

The IOMMU can be thought of as a generalization of two facilities included in the AMD64 architec-
ture: the GART and the Device Exclusion Vector (DEV). The GART provides address translation of
I/O device accesses to a small range of the system physical address space, and the DEV provides a
limited degree of I/O device classification and memory protection. With appropriate software sup-
port, the IOMMU can emulate the capabilities of the GART or DEV.

IOMMU optionally provides the capability to remap peripheral interrupt vectors.

1.1 Summary of IOMMU Capabilities
The IOMMU extends the concept of protection domains (or domains, for short) first introduced with
the AMD64 DEV. The IOMMU allows each I/O device in the system to be assigned to a specific
domain and a distinct set of I/O page tables. When an I/O device attempts to read or write system

[AMD Public Use]

34 IOMMU Overview

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

memory, the IOMMU intercepts the access, determines the domain to which the device has been
assigned, and uses the TLB entries associated with that domain or the I/O page tables associated with
that I/O device to determine whether the access is to be permitted as well as the actual location in sys-
tem memory that is to be accessed.

The IOMMU may include optional support for remote IOTLBs. A trusted I/O device with IOTLB
support can cooperate with the IOMMU to maintain its own cache of address translations. This cre-
ates a framework for creating scalable systems with an IOMMU in which I/O devices may have dif-
ferent usage models and working set sizes. IOTLB-capable I/O devices contain private TLBs tailored
for their own needs, creating a scalable distributed system of TLBs. The performance of IOTLB-
capable I/O devices is not limited by the number of TLB entries implemented in the IOMMU. A
peripheral with an IOTLB may issue untranslated addresses or pretranslated addresses that are deter-
mined from IOTLB entries. Pretranslated addresses are not checked by the IOMMU except to vali-
date that the peripheral has the IOTLB enable bit set (I = 1) in the corresponding Device Table Entry
(see Figure 7 and Table 7).

Major system resources provided by the IOMMU include:

• I/O DMA access permission checking and address translation using memory-based translation
tables.

• Optional support for guest translation tables compatible with the AMD64 long mode page table
format.

• A Device Table that allows I/O devices to be assigned to specific domains and contains pointers
to the I/O devices’ page tables.

• An interrupt remapping table which the IOMMU uses to provide permission checking and
interrupt remapping for I/O device interrupts

• Optional AMD64 guest virtual APIC mechanism which the IOMMU uses to deliver interrupts to
guest VMs.

• Memory-based queues for exchanging command and status information between the IOMMU
and the system processor(s).

• Optional support for a peripheral page request (PPR) log.
• Features to mitigate PPR and Event Log overflow.
• Optional support for a hardware-based mechanism for allowing privileged I/O devices to directly

access defining regions of system memory.

The IOMMU is similar to the processor's memory management unit, except that it provides address
translation and page protection for direct memory accesses (DMA) by peripheral devices rather than
memory accesses by the processor.

The IOMMU provides no direct indication to an I/O device of a failed translation when processing an
untranslated posted request. This is in contrast to the page fault mechanism employed by CPU’s
MMU.

Systems supported by the IOMMU may consist of a number of processor and device nodes connected
to each other by a data fabric such as AMD Infinity Fabric, Data Fabric links or other means. The

[AMD Public Use]

IOMMU Overview 35

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

IOMMU can only process memory transactions that are routed through its node in the system fabric.
In a system with multiple links and buses to I/O devices, multiple IOMMUs are required to ensure
that each I/O link or bus has appropriate protection and translation applied. Figure 1 shows an exam-
ple of a platform with two I/O interconnect trees. Note that an IOMMU is required in the root node of
both trees. In this example, the IOMMU is implemented as part of the I/O Hub. Other implementa-
tions are possible assuming that they conform to the same topology.

Figure 1: Example Platform Architecture

The IOMMU uses a command queue in memory (the Command Buffer) to accept explicit translation
buffer invalidation commands initiated by system software.

Optionally the IOMMU may include support for peripheral page requests (PPR) for peripherals that
use Address Translation Services (ATS). This creates a mechanism for peripherals and software to
reduce the need for pinned pages during I/O. The IOMMU may include optional support for interrupt
virtualization. This uses a virtualized guest APIC (one implementation of a guest APIC is the
Advanced Virtual Interrupt Controller) with memory tables to deliver interrupts to guest VMs.

1.2 Usage Models
Seven models are discussed to highlight potential uses of the IOMMU in conventional and virtualized
systems. These usage models can enhance system security and stability.

1.2.1 Replacing the GART

The GART is an AMD64 system facility that performs physical-to-physical translation of memory
addresses within a graphics aperture. The GART was defined to allow complex graphical objects,
such as texture maps, to appear to a graphics co-processor as if they were located in contiguous pages
of memory, even though they are actually scattered across randomly allocated pages by most operat-

Infinity
Fabric

IOMMU

Memory Controller

System
Memory

IOTLB MMU TLB

CPU CPU

CPU CPU

GPU
PCI-E®

IOMMU

Memory Controller

System
Memory

IOTLBMMU TLB

CPUCPU

CPUCPU

PCI-E®

I/O
device

I/O
device

I/O
device

I/O
device

PCI-E™

I/O
device

IOTLB

PCI-E™

PCI-E™ PCI-E™

[AMD Public Use]

36 IOMMU Overview

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

ing systems. The GART translates all accesses to the graphics aperture, including loads and stores
executed by the host processor as well as memory reads and writes performed by I/O devices. Only
accesses whose system physical addresses are within the GART aperture are translated; however, the
results of the translation can be any system physical address.

To set up the equivalent translations for I/O device-initiated accesses, the host OS must:

• Construct I/O page tables that specify the desired translations.
• Make an entry in the Device Table pointing to the newly constructed I/O page tables.
• Notify the IOMMU of the newly updated Device Table entry.

At this point, all accesses by both the host processor and the graphics device are mapped to the same
pages as they would have been by the GART.

If the host OS changes the page protection or translation, it must update both the processor page
tables and, if not shared, the I/O page tables and issue appropriate page-invalidate commands to both
the processor and the IOMMU. Unlike the processor, the IOMMU requires page-invalidate com-
mands after any change to the I/O page tables. (AMD64 processors do not require page-invalidate
operations after changes to leaf page table entries that add permission and make no change to transla-
tion.) Sharing of page tables is discussed in Section 2.2.1 [Updating Shared Tables] and Section 2.2.4
[Sharing AMD64 Processor and IOMMU Page Tables—GPA-to-SPA].

Since the IOMMU offers no facilities for restarting device accesses to unmapped or protected
addresses, all pages that the device might access must be mapped with appropriate permissions. In
this respect the IOMMU is similar to the GART.

1.2.2 Replacing the Device Exclusion Vector Mechanism

The Device Exclusion Vector (DEV) is a basic security mechanism that was introduced with the
AMD64 Secure Virtual Machine (SVM) Architecture. Like the IOMMU, the DEV allows I/O devices
to be classified into different domains. Associated with each domain is a bit vector, indexed by physi-
cal page address, indicating whether I/O devices in that domain are allowed to access the correspond-
ing physical page.

The IOMMU provides protection and translation. If only protection is needed, software can create
identity-mapped I/O page tables that specify the desired protection.

1.2.3 32-bit to 64-bit Legacy I/O Device Mapping

With the advent of large physical memories, legacy 32-bit devices that rely on DMA can no longer
arbitrarily access system memory. This complicates operating systems, which must introduce a dis-
tinction between low memory and high memory and perform appropriate bookkeeping to ensure that
legacy I/O devices are only commanded to perform transfers using low memory. The cost is not just
complexity; to perform a transfer from a legacy I/O device to high memory, for example, the operat-
ing system typically allocates a bounce buffer in low memory, performs the transfer in low memory,
and then copies the result to the real destination in high memory. For high-bandwidth I/O devices like
disk controllers and network interfaces, the performance cost of bounce buffer allocation and copying
can be large.

In some operating systems, the GART has been used to work around this problem. When the OS

[AMD Public Use]

IOMMU Overview 37

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

wishes to perform a transfer between a legacy I/O device and high memory, it allocates a portion of
the GART aperture and maps those pages to high memory. It then commands the I/O device to exe-
cute the transfer using the address within the GART aperture, which must be located in low memory.
Although this approach avoids the cost of bounce buffer copies, it is less than desirable, since the rel-
atively small GART aperture must be shared by all legacy I/O devices and any graphics processors in
the system. The device drivers have additional locking and synchronization overhead associated with
page allocation and de-allocation in the GART aperture and system performance may be degraded
due to serialization waiting for the GART aperture to become available.

The IOMMU provides a better solution. First, IOMMU translation applies to the full range of
addresses an I/O device can generate, rather than requiring high-memory transfers to be mapped only
within the narrow range of GART addresses. Moreover, the IOMMU's ability to assign each I/O
device to a different domain means that heavily used I/O devices can be given their own sets of I/O
page tables and do not have to contend with other I/O devices for allocation and de-allocation of I/O
pages.

1.2.4 User Mode Device Accesses

The IOMMU plays a crucial role in allowing arbitrary I/O devices to be safely controlled by user-
level processes, since I/O devices whose memory accesses are translated by the IOMMU can only
access pages that are explicitly mapped by the associated I/O page tables. The I/O devices' access can
therefore be limited to those pages to which the user processes legitimately have access.

Setting up the IOMMU for user-level I/O to an I/O device may be set up similarly to GART emulation
with two differences; first, the mappable address range is the entire range of I/O device-generatable
addresses, and secondly, the operating system is not necessarily required to make exactly equivalent
mappings in the processor page tables (although most likely it will).

Even with the help of the IOMMU, enabling user level I/O device access involves many design con-
siderations. Protecting and remapping DMA is one part of the problem; the other part is interrupt
management, for which the IOMMU provides help.

As was the case with GART emulation, system software must assess the need to lock in memory all
pages that might ever be accessed by an I/O Device controlled by a user-level process. It may be pos-
sible to avoid needing to lock in memory if an I/O Device can use peripheral page request (PPR)
mechanism, optionally implemented by IOMMU, to generate page fault as and when it touches a
page.

1.2.5 Virtual Machine Guest Access to Devices

The IOMMU can be used to allow unmodified virtual machine guest operating systems to directly
access I/O devices. This is really just a special case of allowing user-level access to I/O devices, but
there are a few considerations that warrant separate mention.

First of all, a non-VM-aware guest has no current way of informing its Hypervisor (HV) which pages
an I/O device might access, so the HV must lock the entire guest in memory. The HV’s I/O page
tables for the guest should then simply map guest physical addresses to system physical addresses. If
the HV is running the guest under nested paging and is using nested page tables built to be compatible
with the IOMMU, then the IOMMU can directly share the host CPU page tables for the guest.

[AMD Public Use]

38 IOMMU Overview

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Often a single virtual machine (VM) guest has direct access to multiple I/O devices. By design, all
I/O devices in the guest that need to see exactly the same I/O page translations can share a DomainID
(see “Data Structures” on page 60). If all the I/O devices belonging to a given VM guest are assigned
to the same domain then the IOMMU can share translation cache entries among any of the guest’s I/O
devices.

Finally, guest I/O throughput is often significantly enhanced when guest memory is allocated using
large pages on the host system. Then the I/O page tables can similarly use large pages and the
IOMMU is more likely to avoid thrashing in its translation cache.

1.2.6 Virtualizing the IOMMU

The IOMMU has been designed so that it can be emulated in software by a HV that wishes to present
its VM guests the illusion that they have an IOMMU.

HVs that run non-VM-aware guests already intercept and emulate attempts by their guests to access
PCI configuration space. Therefore, emulation of the IOMMU configuration registers is straightfor-
ward; the emulation can be hooked directly to the existing facilities of the HV for intercepting PCI
configuration space accesses.

The HV must also arrange to intercept and emulate guest accesses to the IOMMU's MMIO-mapped
command registers. Since the overhead of each HV intercept is high, guest operating systems access-
ing the IOMMU have better performance when they enqueue batches of commands in the IOMMU's
Command Buffer located in system memory prior to initiating IOMMU command processing via an
MMIO register access.

Since an untrusted guest OS cannot be allowed to write in the real Device Table, the HV must main-
tain shadow entries in the real table on behalf of the guest. The IOMMU architecture requires soft-
ware to issue invalidate-entry commands to the IOMMU after updating Device Table entries. The HV
can intercept these invalidate commands, look up the corresponding entries in the guest's simulated
Device Table, and make shadow entries in the real Device Table on behalf of the guest. Note that the
DeviceIDs as seen by the guest need not be the same as the real DeviceIDs and the DomainIDs used
by the guest are almost certainly different from the DomainIDs used by the HV in the real Device
Table.

In addition, for each guest VM I/O page table, the HV must construct a shadow I/O page table. This
shadow I/O page table is the page table that is given to the real IOMMU. Unfortunately, since an
incomplete I/O device access cannot be restarted, the HV must construct each guest domain's com-
plete shadow I/O page tables eagerly as soon as the guest enables paging for that domain. The HV
must write-protect guest I/O page tables from the guest in order to intercept all guest updates and
propagate the updates to the shadow I/O page tables.

The Hypervisor (HV) can also implement a subset of the IOMMU optional features by reporting that
subset via the IOMMU Extended Feature Register [MMIO Offset 0030h]. The subset of additional
features can be implemented using the same techniques described above.

1.2.7 Virtualized User Mode Device Accesses

An IOMMU with two-level translation enforces system protection policies while allowing arbitrary

[AMD Public Use]

IOMMU Overview 39

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

I/O devices to be properly controlled by user-level processes in a virtualized system. As noted in Sec-
tion 1.2.4 [User Mode Device Accesses], I/O devices whose memory accesses are translated by the
IOMMU can only access pages that are explicitly mapped by the associated I/O page tables as
granted by the HV and operating system. The I/O devices' access can therefore be limited to only
those pages to which the user-level processes legitimately have access when the device supplies
PASID information. This means I/O operations can be initiated without hypervisor or operating sys-
tem intervention.

In addition to address translation, enabling user level I/O device access involves other design consid-
erations such as remapping interrupts.

System software must assess the need to lock in memory all pages that might ever be accessed by an
I/O device controlled by a user-level process. Peripherals that use ATS can use the peripheral page
request mechanism when implemented by an IOMMUto avoid needing to lock in all pages. As was
the case with GART emulation, system software must assess the need to lock in memory all pages
that might ever be accessed by an I/O device controlled by a user-level process. If a peripheral has
support for the PCI Express ATS protocol and implements an IOTLB and in addition implements sup-
port for the optional Peripheral Page Request protocol (PRI/PPR), then system software (Operating
System or Hypervisor) is able to support pageable memory access for user level controlled I/O
devices.

1.3 IOMMU Optional Features
All implementations of the IOMMU provide a base set of capabilities. This base functionality is also
known as IOMMU Revision 1.

Subsequent revisions of this specification added new software-observable features. All these features
are technically optional, although most IOMMU implemenations included all of the features that
were defined at the time of their design.

Architecturally, however, software must determine support for each feature and must enable each fea-
ture before using it.

Optional features include:

• Guest virtual to guest physical address translation capability
• AMD64 long mode page table compatibility
• Support for PCI ATS
• Support for PCI-SIG PRI and PASID TLP prefix ECN
• Support for a guest virtual APIC (e.g., AVIC)
• Enhanced performance and error logging features
• Guest page table User/Supervisor access privilege checking
• Guest page table Global Supervisor-level access protection
• Guest page table non-executable page protection
• Segmentation of the Device Table
• PPR and Event Log dual buffers with optional autoswap
• PPR Auto Response with Always-on feature

[AMD Public Use]

40 IOMMU Overview

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

• PPR Log early overflow warning
• Device-specific feature reporting registers
• MMIO access to MSI setup and mapping configuration space fields
• Memory Access Routing and Control (MARC)
• Automatic Block StopMark Message Handling
• Guest I/O Protection
• x2APIC
• Hardware Accelerated Virtualized IOMMU (vIOMMU)
• Secure ATS
• Secure Nested Paging

All implementations of the IOMMU support basic capabilities such as Device Virtual to System
Physical Address translation, interrupt remapping, and access permissions checking. To determine if
a particular implementation of the IOMMU supports any of the architecturally-defined optional fea-
tures, software must first check that the EFRSup bit of the IOMMU Capability Header [Capability
Offset 00h] (EFR) is set. If the EFRSup bit is set, the IOMMU Extended Feature Register [MMIO
Offset 0030h] is supported. By reading the EFR software can determine which of the optional fea-
tures are supported by the particular IOMMU present in that system. In most cases, support for a fea-
ture is indicated by a non-zero value in the respective field of the EFR.

The EFRSup bit and many of the feature and capability reporting fields related to I/O virtualization
are replicated in the IOMMU ACPI Tables. Information reported via this method supersedes informa-
tion reported via the Extended Feature Register and the Miscellaneous Information Register. See
Chapter 5, "I/O Virtualization ACPI Table".

Software Implementation Note: Software should not rely on the feature support information con-
veyed by the IOMMU Extended Feature Register for any feature that is also reported in the ACPI
tables since system firmware can override the functional capabilities reported by the IOMMU hard-
ware.

Table 2 below lists all the architecturally defined features and specifies the field to test to determine
support for that feature. In the table, EFR refers to the IOMMU Extended Feature Register [MMIO
Offset 0030h], CapHdr refers to the IOMMU Capability Header [Capability Offset 00h], and CNTRL
refers to the IOMMU Control Register [MMIO Offset 0018h].

[AMD Public Use]

IOMMU Overview 41

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Table 2: Software-Visible Features

Feature Name Feature Description Determining Support
Initial

Spec Rev

Single layer address translation Section 2.2.3 [I/O Page Tables for Host
Translations]

Base Support 1.0

Interrupt remapping Section 2.2.5 [Interrupt Remapping Tables] Base Support 1.0

IOMMU EFR IOMMU Extended Feature Register [MMIO
Offset 0030h].

CapHdr[EfrSup] 1.2

Address Translation Services
(ATS)

Section 2.2.7 [Guest and Nested Address
Translation]

CapHdr[IotlbSup] 1.2

Guest Translation Section 1.3.1 [Two-level Translation for
Guest and Host Address Spaces],

MMIO Offset 0030h
[GTSup]

2.0

PASID Section 2.2.7.7 [PCIe® TLP PASID Prefix] MMIO Offset 0030h
[GTSup]

2.0

PPR Support Section 1.3.5 [Peripheral Page Request
Support Compatible with PCI-SIG PRI]

MMIO Offset 0030h
[PPRSup]

2.0

Performance Counter Support Section 1.3.3.1 [Performance Counters] MMIO Offset 0030h
[PCSup]

2.0

SMI filter Section 1.3.10 [SMI Filter] MMIO Offset 0030h
[SmiFSup]

2.0

Guest virtual APIC Section 1.3.7 [AMD64 Interrupt
Virtualization(Guest Virtual APIC Interrupt
Controller)]

MMIO Offset 0030h
[GASup]

2.5

Hardware error registers Section 1.3.11 [Hardware Error Registers] MMIO Offset 0030h
[HESup]

2.0

Multi-level guest CR3 Table Section 2.2.6.3 [Guest CR3 Table] MMIO Offset 0030h
[GLXSup]

2.0

Invalidate all command Section 2.4.8
[INVALIDATE_IOMMU_ALL]

MMIO Offset 0030h
[IASup]

2.0

Prefetch command Section 2.4.6
[PREFETCH_IOMMU_PAGES]

MMIO Offset 0030h
[PreFSup]

1.24

No Execute page protection Section 2.2.6.1 [Support for AMD64 Guest
Page Table NX field]

MMIO Offset 0030h
[NXSup]

2.0

Privileged access protection Section 2.2.6.2 [AMD64 Guest Page Table
Access Protection]

MMIO Offset 0030h
[USSup]

2.0

Global Privileged Page Access
Abort

Section 2.2.6.2 [AMD64 Guest Page Table
Access Protection]

MMIO Offset 0030h
[USSup] &&
CNTRL[PrivAbrtEn] = 01b

2.6

Device Table Segmentation Section 2.2.2.3 [Device Table
Segmentation]

MMIO Offset 0030h
[DevTblSegSup]

2.6

Dual Event Buffer Section 2.5.17 [Event Log Dual Buffering] MMIO Offset 0030h
[DualEventLogSup]

2.6

[AMD Public Use]

42 IOMMU Overview

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Dual PPR Buffer Section 2.6.1 [PPR Log Dual Buffering] MMIO Offset 0030h
[DualPprLogSup]

2.6

Device-Specific Extensions
Reporting

Section 3.4.7 [Device-Specific Feature
Registers]

— 2.6

MMIO access to MSI
Capability Registers

Section 3.4.8 [MMIO Access to MSI
Capability Block Registers]

MMIO Offset 0030h
[MsiCapMmioSup]

2.6

PPR log overflow protection–
Auto Response

Section 2.6.4 [PPR Log Overflow
Protection]

MMIO Offset 0030h
[PprAutoRspSup]

2.6

PPR log overflow protection–
Always-On Auto Response

Section 2.6.4 [PPR Log Overflow
Protection]

MMIO Offset 0030h
[PPRautoRspSup] &&
CNTRL[AutoRespAON]

2.6

PPR log overflow protection–
Overflow Early Warning

Section 2.6.4 [PPR Log Overflow
Protection]

MMIO Offset 0030h
[PprOvrflwEarlySup]

2.6

PPR log overflow protection–
Block StopMark

Section 2.6.4 [PPR Log Overflow
Protection]

MMIO Offset 0030h
[BlkStopMrkSup]

2.6

Memory Access Routing and
Control

Section 2.9 [Memory Address Routing and
Control (MARC)]

MMIO Offset 0030h
[MarcSup]

2.6

IOMMU Performance
Optimization

Section 3.4.9 [Performance Optimization
Control Register]

MMIO Offset 0030h
[PerfOptSup]

2.6

Host Access and Dirty Section 1.3.8 [Enhanced Support for Access
and Dirty Bits]

MMIO Offset 0030h
[HADSup] and [HDSup]

3.00

Guest I/O Protection Section 1.3.9 [Guest I/O Protection] MMIO Offset 0030h
[GIoSup]

3.00

x2APIC Support Section 2.2.5.3 [IOMMU x2APIC Support] MMIO Offset 0030h
[XTSup]

3.05

Secure ATS Support Section 2.11 [Secure ATS Support] MMIO Offset 0030h
[SATSSup]

3.06

Hardware Acceleration for
Virtualized IOMMU
(vIOMMU)

Section 1.3.12 [Hardware Accelerated
Virtualized IOMMU (vIOMMU)]

MMIO Offset 0030h
[vIOMMUSup]

3.06

Secure Nested Paging (SEV-
SNP)

Section 1.3.13 [Secure Nested Paging (SEV-
SNP)]

MMIO Offset 0030h
[SNPSup]

3.06

Disable IRTE Caching IOMMU Control Register
MMIO Offset 0018h[IRTCacheDis]

MMIO Offset 0018h
[IRTCacheDis]

3.06

GPA based GCR3 Table Root
Pointer

Section 2.2.6.3 [Guest CR3 Table] MMIO Offset 01A0h
[GCR3TRPModeSup]

3.07

Support for AMD64 Level 5
(PML5E) Page Table

Section 2.2.6.4 [Support for AMD64 Level
5 (PML5E) Page Table]

Capability Offset 10h
[GVAsize]

3.07

Suppress Guest APIC Physical
Processor Interrupt

Section 2.2.5.4 [Guest APIC Physical
Processor Interrupt]

MMIO Offset 01A0h
[GAPPIDisSup]

3.07

Table 2: Software-Visible Features (Continued)

Feature Name Feature Description Determining Support
Initial

Spec Rev

[AMD Public Use]

IOMMU Overview 43

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

1.3.1 Two-level Translation for Guest and Host Address Spaces

The IOMMU adds an optional layer of guest address translation similar to the processor two-level
nested paging capability. The layered address translation may be viewed as nested address spaces as
illustrated in Figure 2. Each address space has a set of address translation tables. The IOMMU can
provide guest-physical-to-system-physical address translation managed by the hypervisor (sometimes
called “L2 translation”). The Device Table entry is extended to include optional address translation
information for guest-virtual-to-guest-physical address translation managed by the guest operating
system (sometimes called “L1 translation”). This allows for advanced computing architectures in vir-
tualized systems such as compute-offload, user-level I/O, and accelerated I/O devices. The IOMMU
indicates that two-level translation is supported via MMIO Offset 0030h[GTSup]. When supported,
two-level translation is activated by programming the appropriate Device Table entries.

Guest APIC Physical
Processor Interrupt

Section 2.2.5.4 [Guest APIC Physical
Processor Interrupt]

MMIO Offset 0030h
[GAPPISup]

3.07

AMD Tiered Memory Page
Migration

“Compute Express Link (CXL)
Specification Revision 3.0.” URL:
https://members.computeexpresslink.org/wg
/CXL/document/3211

MMIO Offset 01A0h
[TMPMSup]

3.08

Interrupt Remapping Support
for 2K interrupts

Section 2.2.5 [Interrupt Remapping Tables] MMIO Offset 01A0h
[NumIntRemapSup]

3.10

AVIC support SNP enabled
systems

Section 2.2.5.2 [Interrupt Virtualization
Tables with Guest Virtual APIC Enabled]

MMIO Offset
01A0h[SNPAVICSup]

3.10

HT Range Ignore Support Section 2.1.2 [IOMMU Logical Topology] MMIO Offset 01A0h
[HTRangeIgnore]

3.10

Table 2: Software-Visible Features (Continued)

Feature Name Feature Description Determining Support
Initial

Spec Rev

[AMD Public Use]

44 IOMMU Overview

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Figure 2: Nested Address Spaces

Guest address translation tables can support up to 1048576 (220) concurrent processes as an architec-
tural limit. However, a given implementation may support fewer. The value of the field MMIO Offset
0030h[PASmax] can be used to calculate the maximum PASID supported. The guest address transla-
tion tables contain guest physical addresses and the tables are indexed using guest virtual addresses.
As a result, the tables are managed by the guest operating system within a virtual machine. The HV
manages the nested translation tables and the IOMMU hardware provides mechanisms to keep the
tables synchronized and to handle exception conditions. The IOMMU automatically walks address
translation tables based on control bits set by system software.

The IOMMU can be used in three operational modes—legacy one-level translation, guest and nested
translation, and one-level guest translation with processor compatible page tables
• For legacy operation, software clears the GV bit in Device Table Entry (DTE). See “Device Table

Entry Format” on page 63.
• For guest and nested two-level translation, software checks MMIO Offset 0030h[GTSup]=1.

Software is then able to program Device Table entries for two-level translations.
• For one-level translation with processor compatible page tables, software programs the IOMMU

for guest and nested translation but programs DTE[Mode] = 000b for the nested translation.

Hypervisor (System Physical Address Space)

Guest Operating System
(Guest Physical Address

Space)

Guest Operating System
(Guest Physical Address

Space)

Process
(Guest Virtual

Address
Space)

Guest
translation

Nested
translation

Process
(Guest Virtual

Address
Space)

Guest
translation

Nested
translation

[AMD Public Use]

IOMMU Overview 45

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

1.3.2 Enhanced Processor Page Table Compatibility

In its base functionality, the IOMMU can share nested (host) page tables with an AMD64 processor
when the Reserved fields are programmed to zeros. In contrast to the processor, the IOMMU does not
re-walk page tables when an access violation is detected using cached information. When the
IOMMU detects an access violation in a nested transaction, either from a TLB hit or from a page-
table walk (TLB miss), it blocks the access or returns an ATS response with the calculated access
privileges. When the IOMMU determines the proper access privileges are present, it allows the
requested access or returns an ATS response with the calculated access privileges.

Processor Page Table Compatibility Feature. The compatibility of the IOMMU with AMD64 long
mode page tables is enhanced when operating in AMD64 mode. The IOMMU can directly share
AMD64 long mode page tables with the processor for guest address translations. The guest page
translation tables are strictly compatible with the AMD64 long mode format and semantics, including
IOMMU updates to the Accessed and Dirty bits (see Section 2.2.6 [I/O Page Tables for Guest Trans-
lations] and Section 2.2.7.4 [Updating Accessed and Dirty Bits in the Guest Address Tables]). When
guest translation is used, the IOMMU follows the AMD64 long mode address translation require-
ments for guest virtual addresses and thus software is not required to issue an invalidation command
when it promotes guest access privileges; only when software demotes guest access privileges or
removes the guest page (“present to not-present”) must software issue an invalidation. Therefore an
ATS request or DMA reference that results in insufficient guest privileges calculated from a TLB
entry may be based on stale information. To determine current permissions, the IOMMU rewalks the
guest page tables to recompute access permission using information read from memory. The nested
page tables may be read as a consequence of the guest table rewalk. The IOMMU determines the
results of the access based on the newly read page table information. The rewalk may require a full
walk of both guest and nested translations. Details are in Section 2.2.7 [Guest and Nested Address
Translation]). The AMD64 long mode page tables contain information about memory types in the
Page Attribute Table (PAT); the IOMMU can provide memory type information to a peripheral but
does not interpret or validate the information.

1.3.3 Performance Features

The IOMMU provides three performance-oriented features: performance counters, the PREFETCH
command, and the FLUSH_ALL command.

1.3.3.1 Performance Counters

To provide system software with consistent performance monitoring and evaluation mechanisms, an
optional set of performance counters are defined. Support is indicated by the PCSup bit of the
IOMMU Extended Feature Register [MMIO Offset 0030h]. An implementation may provide count-
ers in addition to the architecturally defined counters. The counters run independently from processor
activity. The counters are organized into n counter banks, each of which fits in a 4-Kbyte page. The
HV may privately control all counter banks or assign one or more counter banks to a guest operating
system. The number of counters and counter banks are reported to system software (see Section 3.4
[IOMMU MMIO Registers] and Section 5.2.2.1 [I/O Virtualization Hardware Definition (IVHD)
Block]). Each counter bank has controls that filter for devices and event sources of interest. Each
event counter is programmed to count events or the duration of the events and each counter register

[AMD Public Use]

46 IOMMU Overview

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

has an optional signal for thresholding purposes (see Section 2.5.11 [EVENT_COUNTER_ZERO
Event]).

When performance counters are supported (MMIO Offset 0030h[PCSup] = 1), software must allocate
a 512-Kbyte region of contiguous system memory for the IOMMU MMIO registers. The region must
be 4-Kbyte aligned. If performance counters are not supported by the IOMMU (MMIO Offset
0030h[PCSup] = 0), the allocation requirement drops to 16 Kbytes.

1.3.3.2 Loading the IOMMU TLB

The optional PREFETCH_IOMMU_PAGES command gives system software the ability to load the
IOMMU TLB with relevant translation information (see Section 2.4.6 [PREFETCH_IOM-
MU_PAGES]), especially error processing information (Section 2.4.6.1 [Event Processing for
PREFETCH_IOMMU_PAGES]).

Support for the prefetch feature is indicated by MMIO Offset 0030h[PreFSup]. If PreFSup=0, a
PREFETCH_IOMMU_PAGES command causes the IOMMU to create an error event (Section 2.5.6
[ILLEGAL_COMMAND_ERROR Event]). Because a TLB is a caching structure, the prefetch com-
mand must be considered advisory. Even if the IOMMU were to fetch the address translation infor-
mation for every prefetch command, the TLB entry may be overwritten by other translation
information before it is ever used and an attempt to use the translation information would cause a
page table walk after all.

The PREFETCH_IOMMU_PAGES command is a hint to the IOMMU that the associated translation
records will be needed relatively soon and that the IOMMU should execute a page table walk to load
the translation information. Based on internal status and workloads, the IOMMU may fetch the trans-
lation information into a TLB. If an entry is already in the TLB, the IOMMU may adjust LRU or
other control tags to lengthen cache residency.

1.3.3.3 Flushing the IOMMU TLB

The base function of the IOMMU provides the INVALIDATE_DEVTAB_ENTRY command (per
DeviceID), the INVALIDATE_IOMMU_PAGES command (per DomainID), and the INVALI-
DATE_INTERRUPT_TABLE command (per DeviceID) which software can use to invalidate I/O
TLB entries.

The optional INVALIDATE_IOMMU_ALL command may simplify trusted boot, error recovery, and
resumption from low-power states (see Section 2.4.8 [INVALIDATE_IOMMU_ALL]). At the com-
pletion of an INVALIDATE_IOMMU_ALL command, all IOMMU TLBs are invalidated, including
cached portions of the Device Table, guest CR3 table, page directory entries, page table entries, and
interrupt remapping entries (including the Guest APIC Table Root Pointer). Section 2.4.11 [IOMMU
Ordering Rules] describes how outstanding operations must be handled.

The operational status of the IOMMU is not affected by INVALIDATE_IOMMU_ALL. Translations,
command and event processing, address translation requests, and peripheral page request processing
continue normally. The contents of the MMIO registers are not affected except to advance the Com-
mand Buffer Head Pointer Register [MMIO Offset 2000h] beyond the INVALIDATE_IOMMU_ALL
command. The IOMMU may start reloading internal caches with information at any time after the
INVALIDATE_IOMMU_ALL command completes. The INVALIDATE_IOMMU_ALL command

[AMD Public Use]

IOMMU Overview 47

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

guarantees ordering as described in Section 2.4.11 [IOMMU Ordering Rules].

Note that the INVALIDATE_IOMMU_ALL command does not invalidate remote IOTLBs. In the
case of ATS, invalidation can be achieved by disabling and re-enabling ATS on each PCI device/func-
tion.

Support for the INVALIDATE_IOMMU_ALL command is indicated by the IASup bit of the
IOMMU Extended Feature Register [MMIO Offset 0030h].

1.3.4 Address Translation Services for Guest Virtual Addresses

Base Function. Address translation services can be used by a peripheral to translate a GPA to an
SPA. To translate a GPA to an SPA, a PCIe®-connected peripheral issues an ATS request lacking a
PASID TLP prefix recognized by the IOMMU (see Section 2.2.7.7 [PCIe® TLP PASID Prefix]). The
IOMMU evaluates access privileges using cached information and walks the page tables when
required. The resulting access privileges are returned in the ATS response.

Optional Enhancements. Address translation services can be used by a peripheral to translate a GVA
or GPA to an SPA. To translate a GVA to an SPA, a peripheral issues an ATS protocol request. The
request contains a valid PASID, the access attribute flags and a (canonical) virtual address (see Sec-
tion 1.3.6 [Selecting Translation Tables in a Memory Transaction] and Section 2.2.7.7 [PCIe® TLP
PASID Prefix]). An integrated peripheral may use means other than the ATS protocol to present flags
and the virtual address, such as wire signals. The IOMMU evaluates access privileges using cached
information for efficiency and walks the page tables when required. To match AMD64 semantics, the
IOMMU must re-walk the guest page tables if previously cached information indicate insufficient
privileges for the access (see Section 2.2.7.1 [Combining Guest and Host Address Translation] and
Table 32 on page 117). The resulting access privileges are returned in the ATS response. To carry the
additional information for a guest address, the IOMMU uses a PCIe TLP prefix containing a valid
PASID.

The IOMMU must update the Accessed and Dirty bits in the GVA page table while servicing an ATS
request as if the peripheral had actually accessed memory (see Section 2.2.7.4 [Updating Accessed
and Dirty Bits in the Guest Address Tables]). For the purpose of evaluating GVA Accessed and Dirty
bits, the IOMMU must use the access level indicated in the ATS packet. An ATS request for read-only
access determines the Accessed bit setting and an ATS request for read-write access determines the
Dirty bit setting (see Table 32 on page 117). When processing a GPA, the IOMMU treats the page
tables as read-only.

Software Note: Software must issue an invalidation command when it changes A or D bits in a page
table entry to 0 from 1. This requirement allows the IOMMU to cache the A & D bits in a TLB for
higher performance.

Software issues an INVALIDATE_IOTLB_PAGES command to cause the IOMMU to generate an
invalidation request to the peripheral (see Section 2.4.4 [INVALIDATE_IOTLB_PAGES]). An
invalidation request sent to the device lacks a valid PASID prefix when the contents are a GPA. An
invalidation request sent downstream to the device has a valid PASID prefix when the contents are a
GVA and the PASID is in the PASID TLP prefix field of the command.

The conditions under which a peripheral with an IOTLB must invalidate a cached translation entry

[AMD Public Use]

48 IOMMU Overview

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

that caused an insufficient-privilege check and obtain a fresh translation using ATS are described in
Section 2.1.4.8 [Discarding Device IOTLB Information to Rewalk Page Tables].

1.3.5 Peripheral Page Request Support Compatible with PCI-SIG PRI

IOMMU optionally supports the PCI-SIG PRI specification as a complement to PCI-SIG Address
Translation Service (ATS) specification (see Section 2.1.1 [Normal Operation]). The IOMMU sup-
port for PRI is called peripheral page request (PPR) logging (see Section 2.6 [Peripheral Page
Request (PPR) Logging]).

The operating system is usually required to pin memory pages used for I/O; the pinned pages are
often allocated from a separate memory pool of limited capacity. ATS and PRI can be used together to
enable the peripheral to use unpinned pages for I/O. When processing ATS requests, the IOMMU
does not signal events when insufficient access privileges or not-present pages are detected; instead it
returns the permissions calculated from the page tables. The peripheral examines the response to
determine an appropriate action (e.g., use PRI to request system software to service a page table
entry). Use of PRI/PPR allows a peripheral to request the operating system to change the access priv-
ileges of the page or request the page to be made present in the memory (it was not present).. Use of
ATS with PRI/PPR can allow a system to operate efficiently under low available memory.

1.3.6 Selecting Translation Tables in a Memory Transaction

In the base capabilities of the IOMMU, a PCIe packet contains a GPA and the originating BDF is
used to select GPA-to-SPA translation tables. A PCI-SIG TLP prefix is not interpreted by the
IOMMU.

An optional feature adds support for translating guest virtual addresses to system physical addresses
using the page tables programmed by the guest operating system. The PCI-SIG defines a method to
add information to a transaction called the TLP prefix. When a PCIe transaction has a PASID TLP
prefix, the packet contains a canonical GVA and the TLP prefix selects the guest tables for GVA-to-
GPA translation; when a PCIe transaction has no TLP prefix, the packet contains a GPA. The originat-
ing BDF is used to select GPA-to-SPA translation tables. Details are in Section 2.2.7.7 [PCIe® TLP
PASID Prefix].

1.3.7 AMD64 Interrupt Virtualization(Guest Virtual APIC Interrupt Controller)

The IOMMU optionally supports interrupt virtualization . Device interrupts can be delivered directly
to running guest virtual machines without hypervisor intervention when interrupts are virtualized (see
MMIO Offset 0030h[GASup] and MMIO Offset 0018h[GAEn]). This can reduce the delivery latency
and overhead of guest VM interrupts. This feature requires compatible APIC virtualization support in
the processor. The processor and the IOMMU coordinate to maintain interrupt state in the Guest Vir-
tual APIC Table when delivering interrupts. Interrupt remapping and interrupt virtualization may be
enabled independently. See details in Section 2.2.8 [Guest Virtual APIC Table for Interrupt Virtual-
ization].

1.3.8 Enhanced Support for Access and Dirty Bits

Access bit (A) in page descriptor indicates whether the physical page to which the descriptor points to
has been accessed. Dirty bit (D) in a page descriptor indicates whether the page-translation table or

[AMD Public Use]

IOMMU Overview 49

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

the physical page to which this descriptor points has been written to by a peripheral.

The A bit in the guest page table is set to 1 by the IOMMU the first time the descriptor or the physical
page is either read from or written to. The D bit in the guest page table is set to 1 by the IOMMU the
first time a device writes to the physical page or the descriptor is accessed for an intended write to the
corresponding physical page.

Optionally IOMMU hardware can set A and D bit in the host page table (see IOMMU Extended Fea-
ture Register [MMIO Offset 0030h] HASup and HDSup). When enabled the IOMMU will set A and
D bits to host page table in process similar to that described in Section 2.2.7.4.

Note that IOMMU hardware never clears A or D bits.

System software can use the A bits to help decide to choose candidate pages for page out. D bits can
be used to avoid redundant write-backs to storage.

1.3.9 Guest I/O Protection

Optionally the IOMMU enables Guest I/O protection even for devices that do not support PASID
[Refer to Section 2.2.9]. When enabled, a default PASID equal to 0 is assigned to DMA requests
without PASID associated with the enabled DTE. The DMA requests then go through guest and
nested translations as usual. Operating systems can use this feature to enable I/O protection buffers
using guest page table for devices that may not support PASID.

1.3.10 SMI Filter

The IOMMU optionally supports the interception of System Management Interrupts (SMI) that are
unexpected by system firmware or software. SMIs that are vital to system operation and integrity are
delivered as usual but SMIs from suspect sources can be blocked or deferred for later processing or
analysis. See Section 2.1.5 [System Management Interrupt (SMI) Controls] for details of SMI filter
operation.

1.3.11 Hardware Error Registers

All error events are reported in the IOMMU event log. Optionally, error reporting is enhanced by log-
ging critical events in the hardware error registers. See IOMMU Hardware Event Upper Register
[MMIO Offset 0040h], IOMMU Hardware Event Lower Register [MMIO Offset 0048h], and
IOMMU Hardware Event Status Register [MMIO Offset 0050h].

1.3.12 Hardware Accelerated Virtualized IOMMU (vIOMMU)

The IOMMU may optionally support the vIOMMU feature which provides partial hardware accelera-
tion when implementing Guest IOMMUs. Guest IOMMUs are IOMMUs exposed to VMs. vIOMMU
provides acceleration when a VM accesses its Command Buffer, PPR Log, and Event Log. This elim-
inates the CPU overhead needed for the supporting HV intercepts and reduces the latency of these
operations.

The HV continues to emulate the IOMMU configuration space registers and a subset of the IOMMU
MMIO registers which are primarily used during initialization. Additionally, the HV must initialize
the vIOMMU feature, map MMIO resources between the VMs and the IOMMU, manage additional

[AMD Public Use]

50 IOMMU Overview

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

supporting data structures in memory, and allocate backing storage memory for the IOMMU.

The previously defined Two-Level Translation feature enabled the IOMMU to walk Guest page table
data structures created by a VM.

Under vIOMMU, the IOMMU exposes MMIO resources that can be used to implement a portion of
each VM's guest IOMMU MMIO register space. When a VM attempts to access guest IOMMU
MMIO registers with offsets between 8KB and 12KB such as the Command Buffer, Event Log and
PPR Log head and tail pointer registers, this is serviced directly by the IOMMU. When the IOMMU
accesses a VM Command Buffer, PPR Log or a COMPLETION_WAIT store location in memory, it
directly accesses VM guest physical memory. The IOMMU translates fields such as Device ID and
Domain ID between VM encodings and the corresponding HV encodings as necessary. Finally, the
IOMMU may directly issue interrupts to the VM IOMMU driver such as for COMPLETION_WAIT
commands or due to writing the PPR Log.

The vIOMMU architecture is designed to support up to 64K simultaneous VMs. It is possible for the
HV to enable vIOMMU in some VMs while providing a fully emulated IOMMU to other VMs.

See Section 2.10 [vIOMMU] for more details.

1.3.13 Secure Nested Paging (SEV-SNP)

The SEV-SNP feature provides additional memory security checks to better isolate Guest memory. It
leverages a separate Reverse Map Table (RMP) data structure that provides information associated
with each SPA page.

See “IOMMU Secure Nested Paging (SEV-SNP) Support” on page 195 for more details.

Refer to APM2 and SNP-WP for more details on SEV-SNP.

[AMD Public Use]

Architecture 51

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2 Architecture

This chapter describes the IOMMU's architecture mainly from a system software point of view. The
discussion starts with the normal steady state behavior of the IOMMU once it has been set up, focus-
ing on how the IOMMU handles various device transactions. The following section describes the in-
memory data structures used to control the IOMMU, together with the procedures software must fol-
low to correctly update these (shared) data structures. Finally, the chapter concludes with a descrip-
tion of the PCI resources that must be initialized at system startup time to configure the IOMMU.

2.1 Behavior
When the IOMMU is disabled it simply passes all bus traffic through without alteration.

When the IOMMU is enabled, it intercepts requests arriving from downstream devices (which may be
attached to the system via the data fabric, PCIe link, or other means), performs permission checks and
address translation on the requests, and sends translated versions upstream to system memory. Other
requests are passed through unaltered (details in Section 2.1.1 [Normal Operation]). PCI devices ser-
viced by a single IOMMU must be on the same PCI Segment Group (see PCI Firmware specification
for further details of PCI Segment Groups).

The IOMMU reads three tables in system memory to perform its permission checks, interrupt remap-
ping, and address translations. To avoid deadlock, memory accesses for device tables, page tables,
and interrupt remapping tables by the IOMMU use an isochronous virtual channel and may only ref-
erence addresses in system memory. Other memory reads originated by the IOMMU to command
buffers, event log entries, and optional request queue entries use the normal virtual channel. System
performance could be substantially reduced if the IOMMU performed the full table lookup process
for every device request it handled. Therefore, implementations of the IOMMU are expected to main-
tain internal caches for the contents of the IOMMU's in-memory tables, and correct operation of the
IOMMU requires system software to send appropriate invalidation commands to the IOMMU when it
updates table entries that may have been cached by the IOMMU.

The IOMMU writes to the event log in system memory using the normal virtual channel. The
IOMMU can optionally write to the peripheral page request log in system memory and these writes
use the normal virtual channel. The IOMMU can optionally write to the guest virtual APIC log in sys-
tem memory and these writes use the normal virtual channel.

The IOMMU signals interrupts using standard PCI MSI or MSI-X interrupts.

2.1.1 Normal Operation

The typical flow of requests through the IOMMU is as follows:

• Read, write, and interrupt transactions generated by the IOMMU are not translated by the
IOMMU.

• Transactions arriving from upstream must be passed downstream unaltered.
• Transactions arriving from downstream that are response, fence, or flush commands must be

passed upstream unaltered.

[AMD Public Use]

52 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

• Transactions arriving from downstream that reference addresses within the IOMMU exclusion
range must be passed upstream unaltered.

• Memory read and write transactions from downstream result in table lookups in the Device Table
to obtain the DomainID of the requesting I/O device and to locate I/O page tables. Further table
lookups are required in I/O page tables to perform address translation and permission checking.
After performing permission checks and address translation, the IOMMU forwards the resulting
transactions upstream if the transaction is allowed from the I/O device.

• Address translation requests from downstream result in table lookups as for memory read and
write transactions. Translated address and access permission information is returned to the
requesting peripheral. Software is required to invalidate address translation mappings cached by a
peripheral.

• Peripheral page requests from downstream result in an event log entry if not supported, or result
in a peripheral page request log entry written to system memory. (Optional PPR Auto response
modifies this behavior.)

• Interrupt addresses are never translated to system memory addresses, but Physical address ranges
reserved for Message Signaled Interrupts (MSI) may be optionally treated as memory addresses
for translation (e.g., ACPI address ranges, PCI configuration space mapping).

• Upstream interrupts result in table lookups in the Device Table and then in the interrupt
remapping tables to remap the interrupt. After performing checks and interrupt remapping, the
IOMMU forwards the resulting interrupts upstream if the interrupt is allowed from the I/O device.
SMI requests optionally go through the SMI filter and do not use the interrupt remapping tables.

• Port I/O space transactions from downstream devices result in a Device Table lookup to determine
if the I/O device is allowed to access port I/O space.

• The IOMMU maintains an event log in system memory containing the details of transactions that
do not complete normally.

• The IOMMU maintains an optional guest virtual APIC log containing details of interrupt requests
that arrive when the guest is not running.

• The IOMMU does not further translate pretranslated memory read and write requests from
devices if the I/O device is marked as being able to generate pretranslated addresses.

• The IOMMU processes commands from the command queue.

The optional MARC feature allows accesses from integrated I/O devices such as GPUs to bypass the
IOMMU when accessing defined regions of system memory.

In addition to passing on transactions from downstream devices, the IOMMU inserts transactions of
its own to perform reads to and writes from system memory and to signal interrupts.

The IOMMU is allowed to cache page table and Device Table contents to speed up translations. An
invalidation protocol is defined so that software can keep the cache contents consistent with memory
when it updates the tables. When software initiates a suspend operation that does not preserve the
state of the processor or chipset, the state of the IOMMU stored in registers is lost and must be
restored as part of the resume sequence.

When system software processes a PCI hot-plug notification, the ACPI tables should be inspected to
determine the IOMMU that will service the peripheral and then program the IOMMU appropriately.

[AMD Public Use]

Architecture 53

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.1.2 IOMMU Logical Topology

When MMIO Offset 01A0h[HTRangeIgnore] is set to 0, accesses to the system-defined address
range FD_0000_0000h -FF_FFFF_FFFFh, inclusive, have special meanings. The meaning is encoded
into various portions of the address as shown in Table 3 and Table 19; complete details are in the
HyperTransport™ I/O Link Specification. Upstream transactions to these address ranges are con-
trolled by Device Table control bits, page tables, or the interrupt remapping tables. The special
address controls do not apply to pre-translated addresses.

When MMIO Offset 01A0h[HTRangeIgnore] is set to 1, these address ranges are treated as untrans-
lated guest physical addresses (GPA), which are then translated using the IOMMU host page tables. If
DTE[Mode] is 0, these addresses are treated as System Physical Addresses (SPA).

When MMIO Offset 01A0h[HTRangeIgnore] is set to 0, Special Address controls from Table 3 are
applied to untranslated guest physical addresses (GPA) that do not include a PASID TLP prefix.

During configuration, an IOMMU may appear connected in different topologies that are implementa-
tion dependent.

2.1.3 IOMMU Event Reporting

The IOMMU must detect and may report several kinds of events that may arise due to unusual hard-
ware or software behavior. When the IOMMU detects an event of any kind and event logging is
enabled, it writes an appropriate event entry into the event log located in system memory. In addition,
it may optionally signal an interrupt when the event log is written.

Events detected by the IOMMU include I/O page faults as well as hardware memory errors detected
when walking the I/O page tables. A detected event may cause a page table or interrupt remapping
table walk to terminate before reaching the final memory-translation or interrupt-remap entry. When a
walk is terminated early, the event information reported is based on the results calculated in the com-

Table 3: Special Address Controls (GPA) when MMIO Offset 01A0h[HTRangeIgnore]=0

Base Address Top Address Use Access controlled by

FD_0000_0000h FD_F7FF_FFFFh Reserved interrupt
address space

See Section 2.5.9
[INVALID_DEVICE_REQUEST Event]

FD_F800_0000h FD_F8FF_FFFFh Interrupt/EOI IntCtl, Interrupt Remapping Tables

FD_F900_0000h FD_F90F_FFFFh Legacy PIC IACK Page Tables

FD_F910_0000h FD_F91F_FFFFh System Management SysMgt, Page Tables

FD_F920_0000h FD_FAFF_FFFFh Reserved Page Tables

FD_FB00_0000h FD_FBFF_FFFFh Address Translation HtAtsResv, Page Tables

FD_FC00_0000h FD_FDFF_FFFFh I/O Space IoCtl, Page Tables

FD_FE00_0000h FD_FFFF_FFFFh Configuration Page Tables

FE_0000_0000h FE_1FFF_FFFFh Extended Configuration/
Device Messages

Page Tables

FE_2000_0000h FF_FFFF_FFFFh Reserved Page Tables

[AMD Public Use]

54 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

pleted portion of the walk, starting with the Device Table Entry (DTE).

Software Note: the TLB caching behavior of the IOMMU is not defined for an entry causing an
event; some implementations may insert an entry in the TLB cache before verifying that it causes no
exceptions. System software should invalidate the address that caused the event.

2.1.3.1 IOMMU Event Responses

The IOMMU response to events depends on the type of event detected, the type of transaction that
caused the event, and the state of the IOMMU at the time of the event.

If an IOMMU is not enabled or does not support address translation requests, the IOMMU responds
to translation requests with a master abort.

If the IOMMU is enabled, it can have one of three event responses:
• For upstream transactions that are master aborted or target aborted, the PCI/Host bridge that is co-

located with the IOMMU is the completer of the transaction. Transactions that are target aborted
set the legacy Signaled Target Abort bit in a manner consistent with the bus specification over
which the transaction was received (secondary port). These aborted transactions should not set
any AER bits (if implemented and otherwise applicable).

• Exceptions detected in transactions that target the IOMMU function are not logged in the
IOMMU event log. The exceptions are signaled following the rules of the bus specification
applicable to the primary bus with which the IOMMU function is associated.

• Exceptions detected in the transactions originating from the IOMMU function signal the event
following the rules of the bus specification applicable to the primary bus with which the IOMMU
is associated. Additionally, exceptions in command buffer and table walk reads are logged in the
IOMMU event log.

A transaction that attempts to use a Device Table entry beyond the end of the table is treated as in
Table 44. The size of the Device Table is defined by the Device Table Base Address Register, MMIO
Offset 0000h[Size].

2.1.3.2 I/O Page Faults

The IOMMU may detect page-fault conditions when processing peripheral requests and the response
of the IOMMU depends on the type of the request and IOMMU control settings.

A peripheral’s memory transaction may result in an I/O page fault. These page faults can arise for a
variety of reasons, such as I/O page table entries lacking sufficient permission or memory pages
marked not-present. In a traditional processor virtual memory implementation, page faults activate an
exception handler that has the option to correct the underlying problem and retry the faulting instruc-
tion. The IOMMU has no such option: the underlyingdata fabric and PCIe protocols do not provide a
means for the IOMMU to signal a device that it should attempt to retry an access. Consequently,
when the IOMMU detects an I/O page fault, it target aborts the faulting request. The IOMMU sets the
legacy PCI Signaled Target Abort bit, if appropriate, and records I/O page fault information in its
event log when event logging is enabled

For an address translation request, the IOMMU returns the translation result and does not signal a
fault (see also Section 2.1.4.5 [Address Translation Requests in the Special Address Range]). The

[AMD Public Use]

Architecture 55

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

peripheral can examine the translation response to determine if a particular memory transaction
would cause an exception. Peripherals may request page fault service as described in Section 2.6
[Peripheral Page Request (PPR) Logging].

2.1.3.3 Memory Access Errors
The IOMMU's own memory accesses to its in-memory tables may themselves result in several kinds
of errors, including:
• Accesses to nonexistent or non-DRAM addresses because the IOMMU's isochronous virtual

channel is restricted to DRAM addresses only.
• Uncorrectable ECC errors.
• Use of reserved values, including invalid or unsupported type codes in Device Table entries and

reserved bits in page table entries.

The IOMMU records all detected memory access errors in its event log when event logging is
enabled. Optionally hardware errors may also be stored in the error registers (see Section 2.5.16.2
[I/O Hardware Event Reporting Registers]).

2.1.4 Special Conditions

This section defines the behavior of the IOMMU for particular operating conditions.

2.1.4.1 Zero-byte Read Operations

In some bus architectures, a zero-byte read operation is defined as a special operation with well-
defined side effects. Because of these side effects, the IOMMU must permit a zero-byte read opera-
tion when a page is marked to allow either read or write access. Further, because the zero-byte read
operation returns undefined data in some bus specifications, protecting the contents of a non-readable
memory location requires that the IOMMU obscure the returned data for a zero-byte read operation.

Implementation Note: methods to obscure the returned data in a zero-byte read operation include
returning a constant, a random value, or a predictable value not based on the data contents such as
the address.

2.1.4.2 Interrupt Address Range

Accesses to the interrupt address range (Table 3) are defined to go through the interrupt remapping
portion of the IOMMU and not through address translation processing. Therefore, when a transaction
is being processed as an interrupt remapping operation, the transaction attribute of pretranslated or
untranslated is ignored.

Software Note: The IOMMU should not be configured such that an address translation results in a
special address such as the interrupt address range.

2.1.4.3 Multi-page Address Translation Requests Lacking a PDE

An address translation transaction to the IOMMU can request multiple pages. The page size (stride) is
generally determined by the PDE used with level=0 or level=7. The page stride is always a power of
two. For situations where there is no relevant PDE (within the IOMMU exclusion range or when the
DTE[Mode] = 0), the results returned by the IOMMU are implementation-specific.

[AMD Public Use]

56 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.1.4.4 Address Translation Requests in the IOMMU Exclusion Range

I/O devices may request address translations for addresses in the IOMMU exclusion range, defined
by IOMMU Exclusion Base Register / Completion Store Base Register [MMIO Offset 0020h] and
IOMMU Exclusion Range Limit Register / Completion Store Limit Register [MMIO Offset 0028h],
and may cache the results. When software changes the exclusion range, it must invalidate remote
IOTLBs that may contain affected translation entries. Address translation requests to the exclusion
range always return permissions that allow reading and writing

An address translation request for a GPA within the exclusion range returns an implementation-
defined result.

2.1.4.5 Address Translation Requests in the Special Address Range

I/O device address translation requests for a GPA within special address ranges in Table 3 are con-
trolled by the SysMgt and IoCtl settings in the Device Table entry (see Section 2.2.2.1 [Device Table
Entry Format]) and can either return a translation or cause a target abort.

2.1.4.6 Page Translation Entries Spanning Memory and Special Address Ranges

An IOMMU address translation entry for a GPA may be constructed to cover both conventional mem-
ory addresses and special addresses (see Table 3). The DTE[IoCtl] and DTE[SysMgt] fields control
IOMMU behavior. To translate a GPA address in a special address range, set the corresponding spe-
cial address range control in the DTE to direct the IOMMU to translate the desired special address
ranges as memory addresses.

2.1.4.7 Discarding IOMMU TLB Information to Re-walk Page Tables

An optional feature adds the capability for the IOMMU to rewalk the page tables under certain condi-
tions. When the IOMMU detects an access violation based on cached information, it discards the
information in the IOMMU TLB and reloads the translation information from memory. Interrupt
remapping information is only loaded from memory on a TLB miss. See Section 1.3.4 [Address
Translation Services for Guest Virtual Addresses] for details.

2.1.4.8 Discarding Device IOTLB Information to Rewalk Page Tables

An optional feature adds the capability for the IOMMU to rewalk the page tables under certain condi-
tions. The peripheral can use address translation information from the IOTLB or obtained via ATS to
determine access privileges for a nested (host) access. As an AMD extension, a peripheral with an
IOTLB must invalidate a cached entry causing an insufficient-privilege failure when R=1 or W=1 in
the IOTLB entry for a guest access. The peripheral must then request the guest translation informa-
tion using ATS and retry the access. If the revised privileges are insufficient for the retry, the periph-
eral must take appropriate action to abandon the access or issue a PCIe® PRI request for escalated
privileges.

2.1.4.9 Updating the Accessed and Dirty Bits in Guest Page Tables

An optional feature adds the capability for the IOMMU to write to the guest page table. The IOMMU
must update the guest page table Accessed and Dirty bits atomically. The IOMMU never clears the
Accessed or Dirty bits; software is responsible to clear the bits. The IOMMU is allowed to cache
these bits, so software must issue invalidation commands when it clears the bits in a PTE. See Section
2.2.7.4 [Updating Accessed and Dirty Bits in the Guest Address Tables] and Section 2.2.7.5 [Clearing

[AMD Public Use]

Architecture 57

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Accessed and Dirty Bits] for details.

2.1.4.10 Address Translation Response When DTE[Mode] = 0

A peripheral can request address translations when DTE[Mode] = 000b; The returned system physi-
cal address (SPA) is equivalent to the guest physical address.

2.1.4.11 Page Splintering

When an address is mapped by guest and nested page table entries with different page sizes, the
IOMMU TLB entry that is created matches the size of the smaller page (see also AMD64 Technology,
AMD64 Architecture Programmer’s Manual, Volume 2: System Programming, Page Splintering).

2.1.4.12 Atomic Operations Require Read and Write Permissions

Atomic operations both read and write a page. The IOMMU must permit atomic operations from the
peripheral only when the page is marked to allow both read and write operations.

2.1.4.13 INVALIDATE_IOTLB_PAGES and Peripheral Reset

If a peripheral is reset while an INVALIDATE_IOTLB_PAGES command is being executed by the
IOMMU (Section 2.4.4 [INVALIDATE_IOTLB_PAGES]), the peripheral may stop processing
invalidations and software must process any IOTLB_INV_TIMEOUT events that result (Section
2.5.8 [IOTLB_INV_TIMEOUT Event]).

2.1.5 System Management Interrupt (SMI) Controls

In order to ensure AMD64 system management interrupts delivered to the processor come from valid
peripheral sources (DeviceIDs), the IOMMU optionally supports an SMI filter. When MMIO Offset
0030h[SmiFSup]=00b or MMIO Offset 0018h[SmiFEn]=0b, SMI interrupts from any source are
delivered to the processor(s); for other values of MMIO Offset 0030h[SmiFSup], SMI interrupts are
filtered according to the values programmed in the SMI filter registers (see IOMMU SMI Filter Reg-
ister [MMIO Offset 00[60-D8]h]). The number of SMI filter registers available is in MMIO Offset
0030h[SmiFRC]. Each SMI filter register contains a DeviceID and control bits; together, the set of
SMI filter registers can be programmed to define the set of devices from which system management
interrupts will be delivered.

2.1.5.1 SMI Filter Operation

While SMI filtering is enabled and supported by the IOMMU, each upstream SMI is checked to
match against the SMI filter registers that are valid and enabled and an upstream SMI from a Devi-
ceID failing to match any SMI filter register will be blocked. The fields MMIO Offset
0018h[SmiFEn] and MMIO Offset 0018h[SmiFLogEn] control the behavior of the SMI filter. When
SmiFEn=1b, an upstream SMI interrupt request that matches any of the valid SMI filter registers is
delivered upstream without modification. When SmiFEn=1b and SmiFLogEn=0b, an upstream SMI
interrupt request that fails to match any of the valid SMI filter registers is discarded silently (i.e., not
forwarded upstream). When SmiFEn=1b and SmiFLogEn=1b, an upstream SMI interrupt request that
fails to match any of the valid SMI filter registers is logged in the IOMMU event log and the
upstream SMI request is discarded. The event log entry format used is the IO_PAGE_FAULT log buf-
fer entry (Section 2.5.3 [IO_PAGE_FAULT Event]) with the Address[63:0] field set to the value
addressed by the SMI interrupt request (see Table 4). Software must examine the Address field of the

[AMD Public Use]

58 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

event log entry to determine if the logged interrupt request was an attempted SMI interrupt.

2.1.5.2 SMI Filter Address Format
For the purposes of the SMI filter, an SMI is defined as a posted write operation from a peripheral to
an address of the format shown in Figure 3, derived from the HypertransportTM specification. The
SMI filter in the IOMMU does not process posted write operations generated by processors.

Figure 3: System Management Interrupt Address Format

2.1.5.3 Recommended Programming of the SMI Filter
The SMI filter registers are designed to be programmed by any software component. However, the
system software currently available is not typically aware of SMI requests or the valid sources of SMI
requests, so it does not have the information necessary to program the SMI filter. In the typical system
hardware design, all SMI requests will be routed through a single source (typically a component
called the baseboard management controller, or BMC) to be handled by firmware such as BIOS or
UEFI. As a result, the SMI filter should be programmed by the firmware to handle a single source of
SMI requests when the SMI filter is supported by the hardware (see MMIO Offset 0030h[SmiFSup]).

The recommended method to program the SMI filter is:
1. check that the SMI filter is supported (see MMIO Offset 0030h[SmiFSup]),
2. choose an SMI filter register to use from the available set (see MMIO Offset 0030h[SmiFRC]),
3. program the selected SMI filter register to the DeviceID of the BMC (see MMIO Offset 00[60-

63 48 47 40 39 32

Reserved 00h FDh

31 24 23 16 15 8 7 6 5 4 2 1 0

F8h Vector Destination

M
T

[3
]

D
M

T
M MT[2:0] 00b

Table 4: System Management Interrupt Address Fields

Bits Value Description

47:40 00h MBZ: must be zero.

39:24 FDF8h FDF8h: marks the interrupt region.

23:16 (ignored) Vector: vector (ignored by the SMI filter).

15:8 (ignored) Destination: destination (ignored by the SMI filter).

7 0b MT[3]: Message Type[3].

6 0b DM: Destination Mode.

5 (ignored) TM: Trigger Mode (ignored by the SMI filter).

4:2 010b MT[2:0]: Message Type [2:0].

1:0 00b MBZ: must be zero.

[AMD Public Use]

Architecture 59

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

D8]h[SmiDID]),
4. program the selected SMI filter register to be valid (see MMIO Offset 00[60-D8]h[SmiDV]),
5. program the selected SMI filter register to be locked (see MMIO Offset 00[60-D8]h[SmiFLock]),
6. program any remaining SMI filter registers to be not-valid and locked, and
7. program MMIO Offset 0018h[SmiFLogEn] to disable SMI logging.

If the system software that processes the IOMMU event log is aware of the SMI filter, MMIO Offset
0018h[SmiFLogEn] should instead be programmed to enable SMI logging.

The more general case of programming the SMI filter registers is discussed in the following section.

2.1.5.4 General Programming of the SMI Filter Registers

When the IOMMU is reset, software must program the registers to make the SMI filter active. The
optional SMI filter is implemented when MMIO Offset 0030h[SmiFSup] = 01b and enabled when
software programs MMIO Offset 0018h[SmiFEn] = 1b. The SMI filter registers work as a set and the
number of SMI filter registers implemented by an IOMMU is reported in MMIO Offset 0030h[Smi-
FRC] (see also Table 78). Each SMI filter register contains three fields: SmiDV, SmiDID, and Smi-
FLock (see IOMMU SMI Filter Register [MMIO Offset 00[60-D8]h]).

The values of SmiDID and SmiDV are read-only when SmiFLock = 1b and are read-write when Smi-
FLock = 0b. An SMI filter register containing SmiDV = 0b is inactive (never matches) and may be
activated by programming SmiDV = 1b when SmiFLock = 0b; the entire SMI filter register may be
programmed in one operation (i.e., software may set SmiDID, SmiDV = 1b and SmiFLock = 1b in the
same operation). Software may lock an SMI filter register to be inactive by programming SmiDV
= 0b and SmiFLock = 1b. Software may lock a value into an SMI filter register by programming Smi-
DID and SmiDV to the desired values and SmiFLock = 1b. Once locked, an SMI filter register can
only be changed after a system reset sets SmiFLock = 0b.

An entry describing the blocked SMI interrupt request is optionally recorded in the IOMMU event
log (see MMIO Offset 0018h[SmiFLogEn]). When logging is enabled, software can monitor the log
entries to detect if excessive SMI interrupts are being received from an unexpected source device
(DeviceID). When it detects excessive SMI interrupts, software can turn off the logging to reduce
processing overhead. After software throttles or stops the source of the unexpected SMI interrupts,
software can program MMIO Offset 0018h[SmiFLogEn] to resume the creation of event log notifica-
tions for SMI interrupts blocked by the SMI filter. The DTE and IRTE fields SA, SE, IG, and SupI-
OPF do not affect logging of events from the SMI filter (see Table 7 and Table 20).

To freeze a particular configuration of SMI filtering, program the SmiFLock=1b in each implemented
SMI filter register.

System software that is not aware of SMI requests or the valid sources of SMI requests does not have
the information necessary to program the SMI filter and the recommended programming procedure is
described in Section 2.1.5.3 [Recommended Programming of the SMI Filter].

In a more general system design, SMI requests may originate from multiple sources that are not lim-
ited to the baseboard management controller (BMC). The SMI filter can be programmed by the BIOS

[AMD Public Use]

60 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

or UEFI to allow multiple sources of SMI requests when the SMI filter is supported by the hardware
(see MMIO Offset 0030h[SmiFSup]). The procedure for this case is to:
1. check that the SMI filter is supported (see MMIO Offset 0030h[SmiFSup]),
2. for each expected source of SMI requests:

• choose an SMI filter register to use from the available set (see MMIO Offset
0030h[SmiFRC]),

• program the selected SMI filter register to the DeviceID of the peripheral (see MMIO Offset
00[60-D8]h[SmiDID]),

• program the selected SMI filter register to be valid (see MMIO Offset 00[60-D8]h[SmiDV]),
• program the selected SMI filter register to be locked (see MMIO Offset 00[60-

D8]h[SmiFLock]),
3. reserve one or more of the remaining SMI filter registers to be unprogrammed and unlocked for

use by the system software,
4. program remaining SMI filter registers not reserved for use by system software to be not-valid

and locked,
5. program MMIO Offset 0018h[SmiFLogEn] to enable SMI logging so that system software is

informed of SMI requests blocked by the SMI filter.

In this configuration, system software may program the unlocked SMI filter registers to allow SMI
requests from additional peripherals. Software should be aware that once an SMI filter register is
locked, it cannot be reprogrammed until the system is reset. System software and firmware will need
to coordinate use of SMI filter registers using a method that is outside the scope this document.

2.2 Data Structures
Host software must maintain up to eight in-memory data structures for use by the IOMMU. These
data structures are:
1. The Device Table is a table indexed by DeviceIDs. Each Device Table entry contains mode bits, a

pointer to the I/O page tables, a pointer to an interrupt remapping control table, a set of control
bits, and a 16-bit DomainID. The DomainID acts as an address space identifier, allowing multiple
devices sharing the same I/O page tables to share the same translation cache resources on the
IOMMU. The page tables must be the same for all devices that share a DomainID.

2. The I/O page table(s): Each Device Table entry may specify a different I/O page table, or different
Device Table entries may share the same I/O page tables. Each time the IOMMU processes a
device access to memory, it looks up the device virtual address (DVA) in its translation cache
and/or the appropriate I/O page tables to determine whether the device has permission, as well as
(if permitted) the system physical address to access.

3. The command buffer: The IOMMU accepts commands queued by the processor through a circu-
lar buffer located in system memory.

4. The event log: The IOMMU reports atypical events to the processor by means of another circular
buffer, the event log, located in system memory.

5. The interrupt remapping table(s): Each Device Table entry may specify an interrupt remapping

[AMD Public Use]

Architecture 61

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

table. Each time the IOMMU processes a device interrupt request, it looks up the IRTE to remap
the interrupt to the destination with a translated vector. (See Figure 15 on page 91 and Table 20 on
page 91)

6. The peripheral page request log: The IOMMU can accept requests from PRI-capable peripherals
to service page change requests. These requests are reported in a circular buffer, the PPR log,
located in system memory.

7. The guest virtual APIC tables: The IOMMU can update guest interrupt request status.
8. The guest virtual APIC log: The IOMMU can report guest virtual interrupts sent to a guest that is

not running.

Figure 4 illustrates the relationships among the IOMMU data structures.

Figure 4: IOMMU Data Structures

The base functionality of the IOMMU supports one-level translation tables for address translation and
for interrupt remapping. The event log is the only data structure in system memory that is written by
the IOMMU. The maximum size of a virtual address (GPA) is defined in Capability Offset
10h[VAsize] and the maximum size of a physical address (SPA) is defined in Capability Offset

[AMD Public Use]

62 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

10h[PAsize].

The IOMMU optionally supports both one-level and two-level translation tables (Table 5) as well as
guest APIC virtualization, hardware error registers, performance counter registers, peripheral page-
request services, x2APIC, and an SMI filter. An IOMMU can write to the event log, the peripheral
page request log, the guest virtual APIC tables, the guest virtual APIC log, and the guest page tables.
The maximum size of a guest virtual address (GVA) is defined in Capability Offset 10h[GVAsize].

2.2.1 Updating Shared Tables

The I/O page table structures have been designed so they can be shared among processors and
IOMMUs. The table structures (Interrupt Remapping Table, Device Table, and host I/O page tables)
can be shared among IOMMUs.

The guest I/O page table structures are directly compatible with the AMD64 long mode page table
format. IOMMU accesses can optionally update the tables so they can be shared with a processor.
Shared tables have requirements for correct updates by system software.

When updating a table entry, system software is encouraged to use aligned 64-bit accesses although
control bits are defined that allow system software updating a table to use byte accesses. Software
should keep the page table content in a consistent state.

Each table can also have its contents cached by the IOMMU or peripheral IOTLBs. Therefore, after
updating a table entry that can be cached, system software must send the IOMMU an appropriate
invalidate command. Information in the peripheral IOTLBs must also be invalidated.

The IOMMU optionally supports hardware updates of Accessed and Dirty bits in guest page tables.
The IOMMU is allowed to cache these bits, so software must issue invalidation commands when it
clears the bits in memory.

2.2.2 Device Table

I/O devices that originate transactions are identified by a 16-bit DeviceID. The derivation of the Devi-
ceID is fabric-dependent; for example, Figure 5 shows how PCIe and PCI-X® RequesterIDs are
mapped into IOMMU DeviceIDs and Figure 6 shows how the data fabric UnitIDs are mapped into
IOMMU DeviceIDs.

Software Note: the mapping of DeviceID from one bus to another is platform specific; consult the
platform documentation for details.

Figure 5: Example DeviceID Derived from Peripheral RequesterID

The number of bits allocated to the Bus, Device, and Function fields varies according to settings in
the PCI configuration. The partitioning shown is a typical example.

15 8 7 3 2 0

Bus Device Function

[AMD Public Use]

Architecture 63

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 6: DeviceID Derived from Peripheral UnitID

The Device Table is represented as an array of 256-bit entries with the DeviceID being used as an
index into the array. Since there are 65,536 (64K) possible DeviceIDs, the Device Table can be up to
2 Mbytes in length. When Device Table segmentation is not supported or not enabled, space for the
Device Table must be contiguous, although it can be less than 64K entries in length if it is known that
1 or more of the most-significant bits of the DeviceID are not used in the system.

The Device Table Base Address Register [MMIO Offset 0000h], controls the system physical address
and size of the Device Table. The Device Table must be aligned on a 4-Kbyte boundary in system
memory and must be a multiple of 4 Kbytes in length.

The IOMMU reads the entire Device Table entry in a single 256-bit transaction.

Note: Previous versions of this IOMMU specification mentioned that the IOMMU may read the
entire Device Table entry in two 128-bit transactions (as defined by the scope of the validity
indicators)=1. However, no versions of IOMMU hardware implemented this option.

When the IOMMU is enabled, any I/O device whose DeviceID is beyond the end of the Device Table
is denied I/O permission (the IOMMU target aborts the access) and all attempted accesses by such I/O
devices are logged when event logging is enabled. When PPR logging is supported, PRI requests are
not validated using the Device Table and so the IOMMU may create a PPR log entry for an I/O device
whose DeviceID is beyond the end of the Device Table when page requests are enabled (see MMIO
Offset 0018h[PPREn]), so software must validate the DeviceID as part of PPR processing.

If an I/O device uses PCI phantom functions, software must replicate Device Table entries such that
index calculations retrieve the correct entries for any phantom function used by the I/O device.

Device Table segmentation is an optional feature described in Section 2.2.2.3 [Device Table Segmen-
tation] on page 78.

2.2.2.1 Device Table Entry Format

Device table entries have an address translation portion, an interrupt remapping portion, and an inter-
rupt virtualization portion; control bits govern the use of each portion for a given DeviceID. The
address translation portion has guest and nested translation portions that can be manipulated sepa-
rately; guest translation cannot operate without nested translation.

The address translation features in Table 5 may be implemented separately from the interrupt remap-
ping and virtualization features in Table 6; when implemented, address and interrupt features may be
enabled and operated independently.

15 8 7 3 2 0

Bus Unit ID 0

Note: The I/O fabric bus number is located in the Slave/Primary
Interface Block associated with the inbound link that supplies the
data traffic.

[AMD Public Use]

64 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Table 5: Feature Enablement for Address Translation

GTSup
(MMIO
Offset
0030h)

GTEn
(MMIO
Offset
0018h)

Device Table Entry
Address Translation
Settings

Address Translation Features Available for Use

V TV GV

0 X X X X Host Translation supported; Guest Translation
not supported.

1 0 X X X Guest Translation supported, but not enabled.

1 1 0 X X Address for this DeviceID is passed untrans-
lated.

1 1 1 0 X Host page table entry for this DeviceID is not
valid; Guest translation is not available for this
DeviceID

1 1 1 1 0 Guest Translation can not be performed for this
DeviceID because the guest page table entry is
not valid.

1 1 1 1 1 Both Guest Virtual and Guest Phyiscal Address
translation is available and active for this
Device ID.

Note: All encodings not listed are reserved.

Table 6: Feature Enablement for Interrupt Remapping and Virtualization

GASup
(MMIO
Offset
0030h)

GAEn
(MMIO
Offset
0018h)

IV
(DTE)

GuestMod
e
(IRTE)

Interrupt Features Available for Use

0 X X X Interrupt remapping only available.

1 0 X X Interrupt virtualization is supported, but not
enabled.

1 1 0 0 Remapping is available, but not active for this
DeviceID. Virtualization is available, but not
active for the DeviceID.

1 1 1 0 Interrupt remapping is active for the Devi-
ceID, but interrupt virtualization is not.

1 1 1 1 Interrupt remapping and virtualization are
active for the DeviceID.

[AMD Public Use]

Architecture 65

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

The Device Table entry (DTE) format is shown in Figure 7.

Figure 7: Device Table Entry (DTE) Fields

Fields in the Device Table entry are defined in Table 7. Where indicated in Table 7, events are
reported as described in Section 2.5.2 [ILLEGAL_DEV_TABLE_ENTRY Event]. Shaded areas
mark fields that are reserved.

255 248 247 246 245 244 240 239 224

SnoopAttribute

M
od

e0
F

C

A
tt

rV

R
es

er
ve

d

Reserved GuestID[15:0]

223 208 207 206 192

GDeviceID{15:0]

vI
m

uE
n

Reserved

191 190 189 188 187 186 185 184 183 182 181 180 179 160

L
in

t1
P

as
s

L
in

t0
P

as
s

IntCtl

H
P

T
M

od
e

N
M

IP
as

s

E
In

tP
as

s

In
it

P
as

s

G
ue

st
P

ag
in

gM
od

e

R
es

er
ve

d

Interrupt Table Root Pointer [51:32]

159 134 133 132 129 128

Interrupt Table Root Pointer [31:6] IG IntTabLen IV

127 107 106 105 104 103 102 101 100 99 98 97 96

GCR3 Table Root Pointer[51:31]

SA
T

S

SysMgt EX SD

C
ac

he

IoCtl SA SE I

95 80 79 64

GCR3 Table Root Pointer[30:15] DomainID[15:0]

63 62 61 60 58 57 56 55 54 53 52 51 32

Res IW IR
GCR3

TRP[14:12]
GLX GV

G
Io

V

G
P

R
P

P
PR Host Page Table Root Pointer [51:32]

31 12 11 9 8 7 6 2 1 0

Host Page Table Root Pointer [31:12] Mode[2:0] HAD Reserved TV V

[AMD Public Use]

66 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Table 7: Device Table Entry (DTE) Field Definitions

Bits Description

255:248 SnoopAttribute. If AttrV=1, a 3-bit index is generated from the guest page table and used
to select one bit from the SnoopAttribute field to help set the N field in guest ATS
responses. If the indexed SnoopAttribute bit is set to 1, the N field is also set to 1. If the
indexed SnoopAttribute bit is set to 0, the FC field is used to set the N field.
In AMD64 systems, the 3-bit index is generated using {PAT, PCD, PWT} from the guest
PTE.

This field is meaningful when V=1, TV=1, GV=1, AttrV=1 and MMIO Offset
0030h[AttrFWSup]=1, otherwise it must be set to zero.

247 Mode0FC. This field is used in place of the host PTE.FC field when DTE.Mode=0 for
untranslated DMA requests and guest ATS requests. If Mode0FC=1 the ATS N field is set
to 1 in a guest ATS response. The ATS device must clear the NoSnoop attribute when gen-
erating DMA using the returned translation. For untranslated DMA, the IOMMU clears
the PCIe NoSnoop attribute if Mode0FC=1.

This field is meaningful when V=1, TV=1, GV=1, AttrV=1, Mode=0 and MMIO Offset
0030h[AttrFWSup]=1, otherwise it must be set to zero.

246 AttrV: attribute override valid. 1=The Mode0FC and SnoopAttribute fields are valid and
are used to set the N (No-snooped accesses) attribute in guest ATS responses. 0=The
Mode0FC and SnoopAttribute fields are invalid and are not used to modify transaction
attributes. They must be set to 0. Guest ATS responses are returned with N=0. The device
may choose how to set NoSnoop when generating DMA using the returned translation.

This field is meaningful when V=1, TV=1, GV=1 and MMIO Offset 0030h[AttrFW-
Sup]=1, otherwise it must be set to zero.

245 Reserved. This field is reserved and must be set to zero.

No reserved field check is performed if MMIO Offset 0030h[SNPSup]=1.

244:240 Reserved.

239:224 GuestID[15:0]: This GuestID is a 16 bit value which the host software assigns to each
individual guest in the system. Multiple devices can be assigned under the same guest.
This field is meaningful when V=1, TV=1, GV=1, vImuEn=1 and MMIO[vIommuEn]=1,
otherwise it must be set to zero.

223:208 GDeviceID[15:0]: Guest DeviceID. The GDeviceID is a 16 bit device ID the guest soft-
ware assigned cross all the devices under the same guest. The guest deviceID assignment
can be different from the host deviceID. This field is meaningful when V=1, TV=1,
GV=1, vImuEn=1 and MMIO[vIommuEn]=1, otherwise it must be set to zero.

[AMD Public Use]

Architecture 67

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

207 vImuEn: virtualize IOMMU enabled. When vImuEn=1, the device is assigned under a
guest which enables IOMMU virtualization (viommu enabled guest). This field is mean-
ingful when V=1, TV=1, GV=1 and MMIO[vIommuEn]=1, otherwise it must be set to
zero.

206:192 Reserved. Reserved non-zero bits in this field are reported as an event IV=1.

191 Lint1Pass: LINT1 (legacy PIC NMI) pass-through. This bit enables device initiated
LINT1 interrupts to be forwarded by the IOMMU. 1=Device initiated LINT1 interrupts
are forwarded unmapped. 0=Device initiated LINT1 interrupts are target aborted by the
IOMMU. See Table 10.

190 Lint0Pass: LINT0 (legacy PIC ExtInt) pass-through. This bit enables device initiated
LINT0 interrupts to be forwarded by the IOMMU. 1=Device initiated LINT0 interrupts
are forwarded unmapped. 0=Device initiated LINT0 interrupts are target aborted by the
IOMMU. See Table 10. .

189:188 IntCtl: Interrupt control. This field controls how fixed and arbitrated interrupt messages
are handled. Fixed and arbitrated interrupt messages use an architecture specific special
address as shown in Table 3 and Table 19.
00b=Fixed and arbitrated interrupts target aborted
01b=Fixed and arbitrated interrupts are forwarded unmapped
10b=Fixed and arbitrated interrupts remapped
11b=Reserved
See Table 9.
If IntCtl=10b, a valid interrupt table root pointer must be present; if not(IntCtl=10b) the
interrupt table root pointer is ignored.
Note: IntCtl=11b is reported as an event when IV=1.

187 HPTMode: Host Page Table Mode Hint. IOMMU implementations may be able to opti-
mize performance related to secure IOTLB requests when software provides guarantees
related to the host page table for the associated device.
1=Host page table data structures for this device are guaranteed by software to be pinned
and present in memory.
0=Host page table data structures (PDEs and PTEs) for this device may be pageable and
not always present. IOMMU may indicate that the page is not accessible in response to
IOTLB requests and devices may be required to issue Peripheral Page Requests in order to
obtain access to the memory.

This bit is reserved and must be set to 0 when MMIO Offset 0030h[SATSSup]=0.

186 NMIPass: NMI pass-through. 1=pass through NMI interrupt messages unmapped.
0=NMI interrupt message is target aborted by the IOMMU. See Table 10.

185 EIntPass: ExtInt pass-through. 1=pass through ExtInt interrupt messages unmapped.
0=External interrupt message is target aborted by the IOMMU. See Table 10.

Table 7: Device Table Entry (DTE) Field Definitions (Continued)

Bits Description

[AMD Public Use]

68 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

184 InitPass: INIT pass-through. 1=pass through INIT interrupt messages unmapped. 0=INIT
interrupt message handling target aborted by the IOMMU. See Table 10.

183:182 GuestPagingMode: When Guest Translation is enabled for this device, GuestPaging-
Mode indicates the start level of the Guest Page Table.
00b: Start Level is 4, which contains PML4E Entries.
01b: Start Level is 5, which contains PML5E Entries.
10b and 11b: Reserved
The GuestPagingMode value is ignored when GV=0. Must be zero when MMIO Offset
0030h[GTSup]=0.

181:180 Reserved

179:134 Interrupt table root pointer. The interrupt table root pointer is only used when interrupt
translation is enabled (IntCtl=10b). It contains the SPA of the base address of the interrupt
remapping table for the I/O device. The interrupt remapping table must be aligned to start
on a 128-byte boundary.

133 IG: ignore unmapped interrupts. 1=Suppress event logging for interrupt messages causing
IO_PAGE_FAULT events. 0=creation of event log entries for IO_PAGE_FAULT events is
controlled by SupIOPF in the interrupt remapping table entry (see Section 2.2.5 [Interrupt
Remapping Tables]).

132:129 IntTabLen: interrupt table length. This field specifies the length of the interrupt remap-
ping table.
0000b = 1 entry0001b = 2 entries
0010b = 4 entries 0011b = 8 entries
...
1010b = 1024 entries 1011b = 2048 entries
11xxb = reserved
Note: IntTabLen=11xxb is reported as an event when IV=1.

128 IV: interrupt map valid. See Table 9 and Table 10.

127:107 GCR3 Table Root Pointer[51:31]. When guest translations are supported, this field con-
tains the SPA of the guest CR3 table for the I/O device. The guest CR3 table root pointer
may be used by hardware when V=1 and TV=1 and GV=1; it is ignored otherwise. See
Section 2.2.6 [I/O Page Tables for Guest Translations].

106 SATS: Secure ATS.
1 = ATS requests are processed as secure ATS requests.
0 = ATS requests are processed as non-secure ATS requests.
When Secure Nested Paging is enabled, software must set SATS=1 when I=1.

This bit is reserved when I=0 or MMIO Offset 0030h[SATSSup]=0.

Table 7: Device Table Entry (DTE) Field Definitions (Continued)

Bits Description

[AMD Public Use]

Architecture 69

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

105:104 SysMgt: system management message enable. Specifies whether device-initiated untrans-
lated memory requests that target the system management address space in Table 3 are
blocked, forwarded, or translated by the IOMMU.
00b=Device initiated DMA transactions in the system management address range are
return target abort status by the IOMMU. Translation requests return target abort status.
01b=Device initiated system management messages, including INTx messages, are for-
warded untranslated by the IOMMU. Upstream reads or non-posted writes return target
abort status. Translation requests return target abort status.
10b=Device initiated INTx messages are forwarded by the IOMMU untranslated; device
initiated system management messages other than INTx messages return target abort sta-
tus. Upstream reads and non-posted writes return target abort status. Translation requests
return target abort status.
11b=Device initiated DMA transactions in the system management address range are
translated by the IOMMU.

103 EX: allow exclusion. 1=Accesses from this device that address the IOMMU exclusion
range are excluded from translation and access checks. 0=Accesses from this device to the
IOMMU exclusion range are translated and checked for access rights. See IOMMU
Exclusion Base Register / Completion Store Base Register [MMIO Offset 0020h] and
IOMMU Exclusion Range Limit Register / Completion Store Limit Register [MMIO Off-
set 0028h].

102 SD: snoop disable. 1=IOMMU page table walk transactions for this device are not
snooped. Data fabric transactions by an IOMMU must not set the coherent bit in page
table walk requests for this device. Software must synchronize page table updates.
0=IOMMU page table walk transactions for this device are snooped. HyperTransport™
transactions by an IOMMU must set the coherent bit in page table walk requests for this
device. See also the Coherent bit in the IOMMU Control Register [MMIO Offset 0018h].

101 Cache: IOTLB cache hint. 1=the IOMMU avoids caching GPA-to-SPA translation infor-
mation obtained for ATS requests. 0=the IOMMU caches GPA-to-SPA translation infor-
mation obtained for ATS requests when the peripheral is directed to issue untranslated
addresses (see Table 12). For ATS requests containing a GVA, the IOMMU optionally
caches translation information and sets U=0 in an ATS response.
Software Note: It is recommended that software set Cache=0 for peripherals with an
IOTLB.
1=Caching of translations for explicit translation requests is not recommended. See Sec-
tion 2.2.7.3 [Recalculating Read and Write Access Permissions].

Table 7: Device Table Entry (DTE) Field Definitions (Continued)

Bits Description

[AMD Public Use]

70 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

100:99 IoCtl: Port I/O control. Specifies whether device-initiated port I/O space transactions are
blocked, forwarded, or translated.
00b=Device-initiated port I/O is not allowed. The IOMMU target aborts the transaction if
a port I/O space transaction is received. Translation requests are target aborted.
01b=Device-initiated port I/O space transactions are allowed. The IOMMU must pass
port I/O accesses untranslated. Translation requests are target aborted.
10b=Transactions in the port I/O space address range are translated by the IOMMU page
tables as memory transactions.
11b=Reserved.
Note: IoCtl=00b and IoCtl=01b control the forwarding upstream of port I/O, if it is
implemented.
Note: IoCtl=11b is reported as an event when V=1.

98 SA: Suppress all I/O page fault events. 1=Suppress event logging for all IO_PAGE_-
FAULT events caused by memory accesses from this I/O device. See also the SupIOPF
control in the IRTE (Table 20).
Note: SA does not affect events logged due to interrupts or IOMMU command processing.
Note: When V=0 the value of SA is ignored by the IOMMU.
Note: SmiFLogEn independently controls the creation of IO_PAGE_FAULT log entries
generated by the SMI filter (see Section 1.3.10 [SMI Filter]).

97 SE: suppress I/O page fault events. Suppress event logging for IO_PAGE_FAULT events
if an IO_PAGE_FAULT event has already been logged in the event log for this I/O device.
1=The IOMMU must only update the event log with an IO_PAGE_FAULT event for the
first page fault seen for the device as long as the DeviceID remains in the IOMMU cache.
The IOMMU clears all state associated with this bit when an INVALI-
DATE_DEVTAB_ENTRY command is received for the device or when the DeviceID is
replaced in the cache by a different DeviceID. See also the SupIOPF control in the IRTE
(Table 20).
Software Note: The SE bit controls a mechanism that reduces the number of event log
entries on a per-device basis. The degree of filtering depends on the behavior of the
Device Table cache. As such, software should not assume that only a single entry per
device is made in the event log.
Note: SE does not affect events logged due to interrupts or IOMMU command processing.
Note: When V=0 the value of SE is ignored by the IOMMU.
Note: SmiFLogEn independently controls the creation of IO_PAGE_FAULT log entries
generated by the SMI filter (see Section 1.3.10 [SMI Filter]).

96 I: IOTLB enable. Controls IOMMU response to address translation requests from periph-
erals. 0=IOMMU returns target abort status when it receives an ATS requests from the
peripheral. 1=IOMMU responds to ATS requests from the peripheral.
This bit does not affect interrupts from the peripheral.
If I=1 when Capability Offset 00h[IotlbSup]=0, the results are undefined.

Table 7: Device Table Entry (DTE) Field Definitions (Continued)

Bits Description

[AMD Public Use]

Architecture 71

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

95:80 GCR3 Table Root Pointer[30:15]. When guest translations are supported, this field con-
tains the SPA of the top (or only) level of the guest CR3 table for the peripheral. The guest
CR3 table root pointer may be used by hardware when V=1 and TV=1 and GV=1. See
Section 2.2.6 [I/O Page Tables for Guest Translations]. Must be zero when MMIO Offset
0030h[GTSup]=0.

79:64 DomainID. The DomainID is a 16-bit integer chosen by software that the IOMMU must
use to tag its internal translation caches and to mark event log entries. I/O devices with
different page tables must be given different DomainIDs. I/O devices that share the same
page tables may be given the same DomainID. I/O devices that share the same
DTE[DomainID] must have the same settings in the DTE[Mode] and page table root
pointer fields, however they may have different values in the DTE[I] and DTE[SysMgt]
fields. If devices with the same DTE[DomainID] are given different non-zero values in
the DTE[Mode] field or different page table root pointer values, the behavior of the
IOMMU is undefined. The value of the DTE[DomainID] recorded in an event log entry is
undefined when V=0 and IV=1.

63 Reserved.
Note: A non-zero value in this field is reported as an event when V=1.

62 IW: I/O write permission. Used in the calculation of effective write access with the per-
mission bits in the page tables; if there are no page tables (DTE[Mode]=000b), then this
bit defines the I/O write permission. 1=I/O device is allowed to perform DMA write trans-
actions and 0-byte read transactions (see Section 2.1.4 [Special Conditions]); the I/O
device is allowed to perform DMA atomic operations when IR is also programmed to
allow read access. 0=Device initiated DMA write and atomic transactions are target
aborted.

61 IR: I/O read permission. Used in the calculation of effective read access with the permis-
sion bits in the page tables; if there are no page tables (DTE[Mode]=000b), then this bit
defines the I/O read permission. 1=I/O device is allowed to perform DMA read transac-
tions; the I/O device is allowed to perform atomic transactions when IW is also pro-
grammed to allow write operations. 0=Device initiated DMA read transactions are target
aborted. When both IW and IW are programmed to 0b, device-initiated 0-byte read trans-
actions are target aborted.

60:58 GCR3 TRP: guest CR3 table root pointer[14:12]. When guest translations are supported,
this field contains the SPA or GPA (depending on MMIO Offset 0018h[GCR3TRPMode])
of the top (or only) level of the guest CR3 table for the I/O device. The guest CR3 table
root pointer may be used by hardware when V=1 and TV=1 and GV=1. See Section 2.2.6
[I/O Page Tables for Guest Translations]. Must be zero when MMIO Offset
0030h[GTSup]=0.

Table 7: Device Table Entry (DTE) Field Definitions (Continued)

Bits Description

[AMD Public Use]

72 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

57:56 GLX: guest levels translated. When guest translations are supported, this field specifies
the type of guest CR3 lookup performed by the IOMMU for the I/O device when the
device presents an address with a valid PASID. 00b=GCR3 table is single-level.
01b=GCR3 table is two-level. 10b=GCR3 table is three-level. 11b=reserved. The GLX
value is ignored when GV=0. See Table 11 and Section 2.2.6.3 [Guest CR3 Table]. Must
be zero when MMIO Offset 0030h[GTSup]=0.
Implementation Note: The number of levels in a guest CR3 table supported by hardware
is indicated by MMIO Offset 0030h[GLXSup].
Software Note: For a peripheral using PASID values up to 9 bits, software may program
GLX=00b and build one-level GCR3 tables. For a peripheral using PASID values that use
more than 9 bits but fewer than 19 bits, software must program GLX=01b and build two-
level GCR3 base address tables. For a peripheral using PASID values that use 19 or 20
bits, software must program GLX=10b and build three-level GCR3 base address tables.

55 GV: guest translation valid. When guest translations are supported, this field controls
guest-level translation. 0=IOMMU performs GPA-to-SPA translation only; GLX and the
GCR3 table root pointer fields are ignored. 1=IOMMU performs GPA-to-SPA translation
or GVA-to-SPA when a valid PASID is provided; GLX and the GCR3 table root pointer
values are used for GVA-to-GPA translations. Software programs this bit when guest page
translation is available (see Table 5). This bit is meaningful when V=1 and TV=1 and
MMIO Offset 0030h[GTSup]=1. Must be zero when MMIO Offset 0030h[GTSup]=0.

54 GIoV: guest I/O protection valid. This field indicates whether guest I/O protection is
enabled for the I/O device. 1=Requests from the I/O device without a PASID are treated as
if they have PASID of 0. Guest translation is performed if enabled. 0=Requests from the
I/O device without a PASID are not modified. Only host translation is performed.

This bit is meaningful when V=1, TV=1, GV=1 and MMIO Offset 0030h[GIoSup]=1.
Must be zero when MMIO Offset 0030h[GIoSup]=0 otherwise an error will be reported
when V=1.

MMIO Offset 0030h[EPHSup] must be set if the device supports PRI and using the Guest
I/O protection feature.

53 GPRP: guest PPR response with PASID. This field controls whether a PASID is returned
as part of a guest auto PPR response.1=Auto PPR response is sent with a PASID if the
PPR request had a PASID. 0=All auto PPR responses are sent without PASID. See Section
2.6.4.1 [PPR Auto Response] on page 182. It is recommended for OS supporting Page
Requests for SVM to set the bit to 1.

This bit is meaningful when V=1, TV=1, GV=1 and MMIO Offset 0030h[EPHSup]=1.
Must be zero when MMIO Offset 0030h[EPHSup]=0 otherwise an error will be reported
when V=1.

Table 7: Device Table Entry (DTE) Field Definitions (Continued)

Bits Description

[AMD Public Use]

Architecture 73

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

52 PPR: PPR enable. This field controls whether the PPR requests are enabled. 1=I/O device
is allowed to generate PPR requests. IOMMU will copy these into the PPR log if the log is
enabled. 0=I/O device is not allowed to generate PPR requests. PPR requests are dropped
and INVALID_PPR_REQUEST is logged.

This bit is meaningful when V=1 and MMIO is Offset 0030h[EPHSup] = 1. Must be zero
when MMIO Offset 0030h [EPHSup] = 0 otherwise an error will be reported when V=1.

51:12 Page Table Root Pointer. The page table root pointer contains the system physical
address of the root page table for the I/O device for GPA-to-SPA translations. The pointer
is only used in modes where GPA-to-SPA translation is enabled.

11:9 Mode: paging mode. Specify how the IOMMU performs GPA-to-SPA translation on
behalf of the device. If GPA-to-SPA translation is enabled, this field specifies the depth of
the host page tables associated with the device (see page table root pointer).

000b Translation disabled (Access controlled by IR and IW bits. SPA=GPA.)
001b : 1 Level Page Table (provides a 21-bit GPA space)
010b : 2 Level Page Table (provides a 30-bit GPA space)
011b : 3 Level Page Table (provides a 39-bit GPA space)
100b : 4 Level Page Table (provides a 48-bit GPA space)
101b : 5 Level Page Table (provides a 57-bit GPA space)
110b : 6 Level Page Table (provides a 64-bit GPA space)
111b : Reserved

Note: the page table root pointer for GPA-to-SPA translation is ignored when Mode=000b
and when Mode=111b.
Note: Mode=111b is reported as an event when V=1 and TV=1. See also MMIO Offset
0030h[HATS].

8:7 HAD: Host Access Dirty. Controls whether the IOMMU updates the Access and Dirty
bits in the host page table.

00b = IOMMU does not set the Access and Dirty bits in the host page table
01b = IOMMU sets Access bits in the host page table corresponding to peripheral requests
10b = Reserved
11b = IOMMU sets the Access and Dirty bits in the host page table corresponding to
peripheral requests. This encoding is reserved if MMIO Offset 0030h[HDSup]=0.

This field is meaningful when V=1, TV=1 and MMIO Offset 0030h[HASup]=1 otherwise
it must be set to zero.

6:2 Reserved. Non-zero bits in this field are reported as an event when V=1.

Table 7: Device Table Entry (DTE) Field Definitions (Continued)

Bits Description

[AMD Public Use]

74 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

The interactions of the V, TV, IV, and IntCtl control bits are stated in Table 8 and Table 9. The inter-
actions of IV and the pass control bits are defined in Table 10. The event log entries for operations
causing a target abort are defined in Section 2.5 [Event Logging].

1 TV: translation information valid. 1=Page translation information is valid, specifically
IW, IR, the page table root pointer, Mode, and GV. 0=Page translation information is not
valid. TV is not meaningful when V=0. See Table 8.

0 V: valid. 1=Device table entry bits [127:1] are valid. 0=Device table entry bits [127:1] are
invalid and transactions not intercepted by the interrupt remapping portion of the IOMMU
are passed through.
Note: Interrupt remapping portion of the Device Table entry is controlled by the IV bit.
Software note: DomainID must be valid when V=1. See Table 8.

Table 8: V, TV, and GV Fields in Device Table Entry

V TV GV Description

0 X X All addresses are forwarded without translation; individual control fields are
ignored.

1 0 0 The SysMgt, EX, SD, Cache, IoCtl, SA, SE, and I fields are valid. The value
of DomainID is used for event log entries. If the request requires a table walk,
the table walk is terminated. The Mode and Host Page Table Root Pointer
fields are ignored. When guest translation is supported, the GV, GLX, GCR3
Table Root Pointer fields are ignored.

1 0 1 The SysMgt, EX, SD, Cache, IoCtl, SA, SE, and I fields are valid. The value
of DomainID is used for event log entries. If the request requires a table walk,
the table walk is terminated. The Mode, Host Page Table Root Pointer, GV,
GLX, GCR3 Table Root Pointer fields are ignored. If GTsup = 0, this setting
results in ILLEGAL_DEV_TABLE_ENTRY event (see Section 2.5.2 [ILLE-
GAL_DEV_TABLE_ENTRY Event]).

1 1 0 All fields in bits [127:2] are valid and GPA-to-SPA translation is active (see
Section 2.2.6 [I/O Page Tables for Guest Translations]).

1 1 1 All fields in bits [127:2] are valid and GVA-to-SPA translation is active (see
Section 2.2.6 [I/O Page Tables for Guest Translations]). If GTSup = 0, this
setting results in ILLEGAL_DEV_TABLE_ENTRY event.

Table 9: IV and IntCtl Fields in Device Table Entry for Fixed and Arbitrated Interrupts

IV IntCtl Description

0 X All interrupts are forwarded without remapping.

1 00b All fixed and arbitrated interrupts are target aborted.

Table 7: Device Table Entry (DTE) Field Definitions (Continued)

Bits Description

[AMD Public Use]

Architecture 75

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

1 01b All fixed and arbitrated interrupts are forwarded without remapping.

1 10b All fixed and arbitrated interrupts are remapped.

1 11b Behavior undefined.

Table 10: IV and Pass Fields in Device Table Entry for Selected Interrupts

IV Pass Field
Name

Pass Field=0b Pass Field=1b

0 X LINT0, LINT1, SMI, NMI, INIT, and ExtInt interrupts are passed through
unmapped.

1 X SMI interrupts are passed through unmapped. There is no pass field to control
SMI requests. See instead Section 1.3.10 [SMI Filter].

1 Lint0Pass LINT0 interrupts are target aborted. LINT0 interrupts are passed through
unmapped.

1 Lint1Pass LINT1 interrupts are target aborted. LINT1 interrupts are passed through
unmapped.

1 NMIPass NMI interrupts are target aborted. NMI interrupts are passed through
unmapped.

1 INITPass INIT interrupts are target aborted. INIT interrupts are passed through
unmapped.

1 EIntPass ExtInt interrupts are target aborted. ExtInt interrupts are passed through
unmapped.

Table 11: GLX and Maximum Translatable PASID size

MMIO Offset
0030h
GTSup

MMIO Offset
0030h GLXSup

DTE[GV]
(see Table 8)

DTE[GLX] Maximum
translatable
PASID size
(bits)

Levels in
GCR3 table

0 X X XXb none -

1 X 0 XXb none -

1 X 1 11b not defined -

1 00b 1 00b 9 1

1 00b 1 01b, 10b not defined -

1 01b 1 00b 9 1

1 01b 1 01b 18 2

1 01b 1 10b not defined -

Table 9: IV and IntCtl Fields in Device Table Entry for Fixed and Arbitrated Interrupts

IV IntCtl Description

[AMD Public Use]

76 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Although Table 11 defines the maximum PASID size that can be translated using a GCR3 table,
MMIO Offset 0030h[PASmax] defines the maximum PASID size that can be handled internally by
the IOMMU. Figure 21 and Figure 23 illustrate the structure of 1- and 2-level GCR3 tables, respec-
tively. Guest address translation control fields are in Table 24.

Table 12 defines the caching behavior of the IOMMU based on the per-device Cache bit in the DTE
and the per-page U bit in the PTE. In the PCI Address Translation Services 1.1 Specification, the U bit
defines whether the peripheral can issue translated or untranslated addresses to access a page for read,
write, or atomic operations. When PTE[U]=1, software can use the Cache bit in the DTE to provide a

1 10b 1 00b 9 1

1 10b 1 01b 18 2

1 10b 1 10b 20 3

Table 12: Cache bit and U bit for ATS requests

U
(I/O PTE,
Table 17)

Cache
(DTE,
Table 7)

IOMMU
behavior
(advised)

Comments

0 X IOMMU not
advised to
cache results
from ATS
request

The peripheral issues pretranslated addresses (SPA) for
read, write, and atomic operations; the IOMMU is not
likely to need translation information.

1 0 IOMMU is
advised to
cache results
from ATS
requests

The peripheral issues untranslated addresses (GVA or
GPA) for read, write, and atomic operations; the
IOMMU needs translation information to process the
memory transactions.

1 1 IOMMU not
advised to
cache results
from ATS
requests

The peripheral issues untranslated addresses (GVA or
GPA) for read, write, and atomic operations. Note that
the IOMMU is likely to walk page tables to obtain the
needed translation information.

Implementation Note: An ATS response for a GVA always returns U=0 (see Table 17) and software
must account for this when deciding if an invalidation operation is required.
Note: For more information on the U bit, see the PCI Address Translation Services 1.1 Specification.

Table 11: GLX and Maximum Translatable PASID size (Continued)

MMIO Offset
0030h
GTSup

MMIO Offset
0030h GLXSup

DTE[GV]
(see Table 8)

DTE[GLX] Maximum
translatable
PASID size
(bits)

Levels in
GCR3 table

[AMD Public Use]

Architecture 77

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

caching hint to the IOMMU.

2.2.2.2 Making Device Table Entry Changes

This section contains information for software that changes the IOMMU tables. Software should
issue invalidate commands after certain types of changes to tables and note that I/O device accesses
are neither queued nor throttled by the IOMMU. Software may change the interrupt remapping infor-
mation independently of the address translation information in a Device Table entry. These opera-
tional sequences are general and system conditions may allow optimizations. Device table entry
changes may affect guest OS I/O behavior, after invalidation commands have issued.

Software may change the interrupt remapping information in a Device Table entry with a single 64-bit
write. The change must be followed by an INVALIDATE_DEVTAB_ENTRY command when either
the value of IV=1b or the value of V=1b before the change. If a 64-bit operation cannot be used, soft-
ware may change the interrupt remapping information in the Device Table entry in the following
manner, according to the value of IV before the change in the relevant Device Table entry.
• If IV=0b before the change, changes can be made in any order as long as the last change is to set

to IV=1b; an INVALIDATE_DEVTAB_ENTRY command is required when the V=1b before the
change.

• If IV=1b before the change, the following steps may be followed to change interrupt remapping
information for fixed and arbitrated interrupts:
• Set IntCtl=00b in the Device Table entry to block interrupts; any device-initiated interrupts for

the domain are target aborted and, when enabled, logged to the event log.
• Update the interrupt table root pointer, IG, and IntTabLen.
• Invalidate the interrupt table if the interrupt table root pointer or IntTabLen was changed (see

Section 2.4.5 [INVALIDATE_INTERRUPT_TABLE]).
• Change IntCtl to cease blocking interrupts from the device (set IntCtl=01b or 10b).
• Invalidate the Device Table entry (see Section 2.4.2 [INVALIDATE_DEVTAB_ENTRY]).

• If IV=1b before the change, the following steps change interrupt control information in the
Device Table entry for NMI, LINT0, LINT1, INIT, and EXTINT interrupts:
• Update Lint1Pass, Lint0Pass, IntCtl, NMIPass, EIntPass, and InitPass. The setting of IntCtl

can be changed at the same time.
• Invalidate the Device Table entry for the device (see Section 2.4.2

[INVALIDATE_DEVTAB_ENTRY]).

Software may change the address translation information in a Device Table entry with a single 128-bit
write operation followed by an INVALIDATE_DEVTAB_ENTRY command when either IV=1b or
V=1b before the change. If a 128-bit operation cannot be used, software may change the address
translation information in the following ways, according to the values of V and TV before the change.
• If V=0b before the change, address translation changes can be made in any order as long as the

last change is to set V=1b. An INVALIDATE_DEVTAB_ENTRY command is required if IV=1b
before the change.

• If V=1b before the change, software can use the following steps to set the IOMMU to pass
addresses untranslated with access controlled by IR and IW, depending on the value of TV.

[AMD Public Use]

78 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

• If TV=0b before the change, set values for IW, IR, Mode=000b, and TV=1b (maintaining
V=1b), then issue an INVALIDATE_DEVTAB_ENTRY command. If not done as a 64-bit
write, the values of TV and V must be in the final change. Note that the DomainID and other
values in bits [127:96] are already valid because V=1b.

• If TV=1b before the change, software must change IW and IR concurrent with or before
changing Mode and the values of TV and V must be in the final change. Software then issues
an INVALIDATE_DEVTAB_ENTRY command.

The IOMMU optionally supports hardware updates of Accessed and Dirty bits in page tables. The
IOMMU is allowed to cache these bits, so software must issue invalidation commands when it clears
the A or D bit in memory.

2.2.2.3 Device Table Segmentation

Device Table segmentation is an optional feature that allows the Device Table to be divided into 2, 4,
or 8 smaller tables that can be independently located in the system physical address space. This capa-
bility to divide the table into smaller allocation blocks makes it easier to fit the table into system
memory and can make it possible to allocate less total memory space for the Device Table in situa-
tions where the DeviceID space is sparsely populated.

The two-bit field DevTblSegSup of the IOMMU Extended Feature Register [MMIO Offset 0030h]
indicates the number of segments supported by a given implementation. When the value of
DevTblSegSup = 00b, Device Table segmentation is not supported and the Device Table Base
Address Register [MMIO Offset 0000h] controls the location and size of the single, unified Device
Table.

When DevTblSegSup > 00b, Device Table Base Address Register [MMIO Offset 0000h] defines the
location and size of the first (n = 0) segment and additional Device Table Base Address registers are
supported. The architecture defines seven Device Table Segment n Base Address registers located at
MMIO Offsets 100–130h. See Device Table Segment n Base Address Register [MMIO Offset
01[00–30]h] for details on the layout of these registers.

The number of segments enabled is controlled by the 3-bit DevTblSegEn field of the IOMMU Con-
trol Register [MMIO Offset 0018h]. Table 13 shows the registers used to define the location and size
of each Device Table segment based on the number of segments enabled using the DevTblSegEn
field.

Table 13: Registers Utilized to Allocate Device Table Segments

DevTblSegEn
Number of
Active
Segments

Segment
Number

Device Table Base Address Registers Utilized (MMIO Offset)

000b 1 0 Device Table Base Address Register (0000h)

001b 2
0 Device Table Base Address Register (0000h)

1 Device Table Segment 1 Base Address Register (0100h)

[AMD Public Use]

Architecture 79

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

The most-significant 1, 2, or 3 bits of the DeviceID selects the table segment to be used for a DTE
lookup when the table is divided respectively into 2, 4, or 8 segments. When two segments are
enabled, the most significant bit of the DeviceID (DeviceID[15]) selects the table segment and bits
[14:0] provide the index into the table segment to find the correct DTE for the device. When four seg-
ments are enabled, DeviceID[15:14] selects the table segment and bits [13:0] provide the index into
the table segment to find the DTE for the device. When eight segments are enabled, DeviceID[15:13]
selects the table segment and bits [12:0] provide the index into the segment.

To provide full coverage of the DeviceID space, when two segments are enabled, each table segment
must be 1 Mbytes in length; when four segments are enabled, each table segment must be 512 Kbytes;
when eight segments are enabled, each table segment must be 256 Kbytes. If the DeviceID space is
sparsely filled, segments can be sized smaller in increments of 4 Kbytes. However, it should be noted
that the first entry in each table segment m will always correspond to DeviceID = m(65536 / n); where
n = number of table segments.

DevTblSegEn should not be programmed to a value greater than the value DevTblSegSup.

2.2.3 I/O Page Tables for Host Translations

The IOMMU uses a page table structure designed to support a full 64-bit DVA space while allowing
faster translation in many common cases. The format of the IOMMU page tables is a generalization
of AMD64 Architecture long mode page tables while maintaining compatibility with them.

The IOMMU page tables are a multi-level tree of 4-Kbyte tables indexed by groups of 9 virtual

010b 4

0 Device Table Base Address Register (0000h)

1 Device Table Segment 1 Base Address Register (0100h)

2 Device Table Segment 2 Base Address Register (0108h)

3 Device Table Segment 3 Base Address Register (0110h)

011b 8

0 Device Table Base Address Register (0000h)

1 Device Table Segment 1 Base Address Register (0100h)

2 Device Table Segment 2 Base Address Register (0108h)

3 Device Table Segment 3 Base Address Register (0110h)

4 Device Table Segment 4 Base Address Register (0118h)

5 Device Table Segment 5 Base Address Register (0120h)

6 Device Table Segment 6 Base Address Register (0128h)

7 Device Table Segment 7 Base Address Register (0130h)

100b–111b Reserved. — —

Table 13: Registers Utilized to Allocate Device Table Segments (Continued)

DevTblSegEn
Number of
Active
Segments

Segment
Number

Device Table Base Address Registers Utilized (MMIO Offset)

[AMD Public Use]

80 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

address bits (determined by the level within the tree) to obtain 8-byte entries. Each page table entry is
either a page directory entry pointing to a lower-level 4-Kbyte page table, or a page translation entry
specifying a system physical page address. A page translation entry is a page table entry with the Next
Level field set to 0h or 7h. A page directory entry is a page table entry with the Next Level field not
equal to 0h or 7h. The maximum value of Next Level in a page directory entry is defined in MMIO
Offset 0030h[HATS]; exceeding this limit causes an IO_PAGE_FAULT.

The first generalization in the IOMMU page tables compared to AMD64 processor page tables is that
directory entries, in addition to specifying the address of the lower page table, also specify the level,
or grouping of bits within the virtual address, that is used for the next page table lookup step. This
allows the IOMMU to skip page translation steps in cases where the virtual address often contains
long strings of 0 bits, such as software architectures that allocate virtual memory sparsely.

The second generalization in the IOMMU page tables is that page translation entries can specify the
page size of the translation. The default page size of a translation can be overridden by setting the
Next Level bits to 7h. When the Next Level bits are 7h, the size of the page is determined by the first
zero bit in the page address, starting from bit 12 (illustrated in Table 14). The page size specified by
this method must be larger than the default page size and smaller than the default page size for the
next higher level.

The page addresses illustrated in Table 14 are 64-bit values that have been zero-extended from the
52-bit values specified in the DTE and page tables.

Software Note: The page tables are required to have one PTE for each default page size (see
Table 15). When the Next Level bits are equal to 7h, some of the least significant bits of the virtual
address indexing the PTE are used for indexing the enlarged physical page, therefore those bits are
not unique for indexing the PTE and the PTE must be repeated accordingly. For example, if the phys-
ical page is 32 Kbytes, the 3 least significant bits of the Page Table Level 1 virtual address cannot be

Table 14: Example Page Size Encodings

Level Address Bits Page
Size

Default
Page
Size

63:52**,
51:32*

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1 Page Address 0 8 KB 4 Kbytes
1 Page Address 0 1 16 KB 4 Kbytes
1 Page Address 0 1 1 1 1 1 1 1 1 MB 4 Kbytes
2 Page Address 0 1 1 1 1 1 1 1 1 1 4 MB 2 Mbytes
3 Page

Address
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 GB 1 Gbytes

6 7_FFFFh 1 Entire
cache

NA

6 F_FFFFh 1 Undef Undef
* Address bits 51:32 can be used to encode page sizes greater that 4 Gbytes.
** Address bits 63:52 are zero-extended.

[AMD Public Use]

Architecture 81

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

used only for indexing within the page table and therefore the PTE must be repeated 8 times for each
of the 64 unique PTEs given 4-Kbyte page tables. Another example for 4-Mbyte pages is illustrated in
Figure 12. The PTE in the Level-2 page table is replicated twice and bit 21 of the virtual address is
used twice for indexing, first to index the Level-2 table of PTEs and again to index into the 4-Mbyte
page for the data. The replicated Level-2 PTEs have identical contents and follow the example in
Table 14 for a page size of 4 Mbytes. For larger page sizes, the PTEs must be replicated an appropri-
ate number of times so that more bits of the virtual address can be used for indexing.

Implementation Note: While IOMMU implementations are not strictly required to include translation
caches, it is strongly recommended that they include at least a cache for translations of 4-Kbyte page
table entries. IOMMU implementations can cache translations of larger pages by splitting them into
multiple 4-Kbyte cache entries.

The page table pointer for each domain specifies the system physical address and level of the root
page table for that domain. Translation of a DVA begins by comparing it to the root page table’s level.
If the address contains any nonzero bits in bit positions higher than the range selected by the root page
table’s level, translation terminates with an IO_PAGE_FAULT. Otherwise, the appropriate group of
virtual address bits is used to fetch a page table entry from the root page table. If this entry is marked
not present, translation terminates with an IO_PAGE_FAULT. Otherwise the entry may be a page
directory entry pointing to a lower-level page table (in which case the translation process repeats
starting at the new page table using the remaining virtual address bits), or it may be a page translation
entry containing the final system physical address (in which case the translation process terminates
and the remaining DVA bits are concatenated with the translation entry’s physical address to obtain a
translated address). If a translation skips levels and any of the skipped virtual address bits are non-
zero, translation terminates with an IO_PAGE_FAULT.

Effective write permission is calculated using the IW bits in the DTE (see Table 7), the I/O PDEs, and
the I/O PTE. Device accesses to translated addresses are first checked against these cumulative per-
missions before being allowed to proceed. IW and IR bits from skipped levels are treated as if they
were 1s. For a discussion of guest and host permissions, see Section 2.2.7 [Guest and Nested Address
Translation].

Table 15 specifies the virtual address bit groups used for indexing at each level of the page tables, as
well as the default page sizes associated with page translation entries fetched from page tables at each
level. Figure 8 and Figure 9 illustrate the formats of page table entries. If a page table entry contains
nonzero bits in any of the fields marked reserved, if the Next Level field is greater than or equal to the
current page table entry table’s level, or if a page translation entry’s physical address is not aligned to
a multiple of the appropriate page size for the current page table entry page table’s level, translation
terminates with an IO_PAGE_FAULT.

The layout of IOMMU page table entries has been chosen so that the IOMMU can use AMD64 long
mode processor page tables, provided the Next Level fields (which occupy bit positions ignored by
AMD64 processors) are properly initialized according to their level within the processor page tables.
(AMD64 processors lack the IOMMU’s level skipping facility.) All other page table entry fields used
by the IOMMU are either ignored by AMD64 processors, or have the same meaning to both the pro-
cessor and the IOMMU. For more details on sharing page tables see Section 2.2.4 [Sharing AMD64
Processor and IOMMU Page Tables—GPA-to-SPA].

[AMD Public Use]

82 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

The U bit in the page tables is an attribute bit passed to peripherals in ATS responses. See Table 12
for the behavior of the IOMMU for settings of the DTE[Cache] and PTE[U] fields.

IOMMU implementations must zero-fill all high-order physical address (SPA).The IOMMU fields
are architected to produce a physical address of up to 52 bits, thus physical address bits [63:53] are
always zero.

Table 15: Page Table Level Parameters

Page Table
Level

Virtual address bits indexing
table

Default Page size (bytes) for
translation entries

6 63:57 NA

5 56:48 248

4 47:39 239

3 38:30 230

2 29:21 221

1 20:12 4096

63 32

Ignored

31 1 0

Ignored

PR
=

0

Figure 8: I/O Page Table Entry Not Present (any level)

Table 16: I/O Page Table Entry Not Present Fields, PR=0

Bits Description

63:1 Ignored when PR=0.

0 PR: Present. 0=the remainder of the I/O page table entry is ignored and the corresponding
memory page is considered not-present (see Section 2.5.3 [IO_PAGE_FAULT Event]).
When PR=1, see Table 17 and Table 18.

63 62 61 60 59 58 52 51 32

Ign IW IR FC U Reserved Page Address[51:32]

31 12 11 9 8 7 6 5 4 1 0

Page Address[31:12]
Next Level
[2:0]=000b

or 111b
Ignored D A Ignored

PR
=

1

Figure 9: I/O Page Translation Entry (PTE), PR=1

[AMD Public Use]

Architecture 83

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Table 17: I/O Page Translation Entry (PTE) Fields, PR=1

Bits Description

63 Ignored.

62 IW: write permission. 1=write operations are allowed. 0=write operations are not allowed
(see Section 2.5.3 [IO_PAGE_FAULT Event]). Effective write permission is calculated
using the IW bits in the DTE (see Table 7), the I/O PDEs, and the I/O PTE. At each step of
the translation process, I/O write permission (IW) bits from fetched page table entries are
logically ANDed into cumulative I/O write permissions for the translation including the IW
bit in the DTE. IW bits from skipped levels are treated as if they were 1s. For a discussion of
guest and host permissions, see Section 2.2.7 [Guest and Nested Address Translation].

61 IR: read permission. 1=read operations are allowed. 0=read operations are not allowed (see
Section 2.5.3 [IO_PAGE_FAULT Event]). Effective read permission is calculated using the
IR bits in the DTE (see Table 7), the I/O PDEs, and the I/O PTE. At each step of the transla-
tion process, I/O read permission (IR) bits from fetched page table entries are logically
ANDed into cumulative I/O read permissions for the translation including the IR bit in the
DTE. IR bits from skipped levels are treated as if they were 1s. For a discussion of guest and
host permissions, see Section 2.2.7 [Guest and Nested Address Translation].

60 FC: Force Coherent. Software uses the FC bit in the PTE to indicate the source of the
upstream coherent attribute state for an untranslated DMA transaction.1 = the IOMMU sets
the coherent attribute state in the upstream request. 0 = the IOMMU passes on the coherent
attribute state from the originating request. Device internal address/page table translations
are considered "untranslated accesses" by IOMMU.The FC state is returned in the ATS
response to the device endpoint via the state of the (N)oSnoop bit.

59 U. The U bit in the I/O page table entry is an attribute bit passed to a peripheral in an ATS
response for a GPA-to-SPA translation. For a GVA-to-SPA translation, hardware must set
U=0 in the ATS response. For details, see Table 12 and the PCI ATS Specification Version
1.1 or newer.

58:57 Page Migration State[1:0]: When MMIO Offset 01A0h[TMPMSup]=1, these bits are used
by software and IOMMU hardware to aid the Tiered Memory Page Migration process.

Refer to the AMD Tiered Memory Page Migration Operations Guide, order# 58151 for
details on the usage of these bits during page migration process.

When MMIO Offset 01A0h[TMPMSup]=0, these bits are reserved.

56:52 Reserved.

51:12 Page Address[51:12]: Specifies the SPA of the page.

11:9 NextLevel: next page translation level. Specifies the level of page translation as described
in this section. For a PTE, the value of NextLevel must be 0h or 7h.

8:7 Ignored.

[AMD Public Use]

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/58151_0_51-PUB.pdf

84 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

6 D: Dirty. This bit indicates whether the physical page to which this entry points has been
written. The D bit is set to 1 by the IOMMU the first time there is a write to the physical
page. The D bit is never cleared by the IOMMU. Instead, software must clear this bit to 0 as
necessary. IOMMU only sets the D bit if MMIO Offset 0030h[HDSup]=1 and
DTE[HAD]=11b.

5 A: Accessed. This bit indicates whether the physical page to which this entry points has
been accessed. The A bit is set to 1 by the IOMMU the first time the physical page is either
read from or written to. The A bit is never cleared by the IOMMU. Instead, software must
clear this bit to 0 when it needs to track the frequency of physical-page accesses. IOMMU
only sets the A bit if MMIO Offset 0030h[HDSup]=1 and DTE[HAD]=01b or 11b.

4:1 Ignored

0 PR: Present. 1=the remainder of the I/O PTE contains valid information. 0=see Table 16.

63 62 61 60 52 51 32

Ign IW IR Reserved Next Table Address [51:32]/Page Address[51:32]

31 12 11 9 8 6 5 4 1 0

Next Table Address [31:12]/Page Address[31:12]
Next Level
[2:0]!=000b

or 111b
Ignored A Ignored

P
R

=
1

Figure 10: I/O Page Directory Entry (PDE), PR=1

Table 17: I/O Page Translation Entry (PTE) Fields, PR=1 (Continued)

Bits Description

[AMD Public Use]

Architecture 85

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Table 18: I/O Page Directory Entry (PDE) Fields, PR=1

Bits Description

63 Ignored.

62 IW: write permission. 1=write operations are allowed. 0=write operations are not allowed
(see Section 2.5.3 [IO_PAGE_FAULT Event]). Effective write permission is calculated
using the IW bits in the DTE (see Table 7), the I/O PDEs, and the I/O PTE. Effective write
permission is calculated using the IW bits in the DTE (see Table 7), the I/O PDEs, and the
I/O PTE. At each step of the translation process, I/O write permission (IW) bits from fetched
page table entries are logically ANDed into cumulative I/O write permissions for the transla-
tion including the IW bit in the DTE. IW bits from skipped levels are treated as if they were
1s. For a discussion of guest and host permissions, see Section 2.2.7 [Guest and Nested
Address Translation].

61 IR: read permission. 1=read operations are allowed. 0=read operations are not allowed (see
Section 2.5.3 [IO_PAGE_FAULT Event]). Effective read permission is calculated using the
IR bits in the DTE (see Table 7), the I/O PDEs, and the I/O PTE. At each step of the transla-
tion process, I/O read permission (IR) bits from fetched page table entries are logically
ANDed into cumulative I/O read permissions for the translation including the IR bit in the
DTE. IR bits from skipped levels are treated as if they were 1s. For a discussion of guest and
host permissions, see Section 2.2.7 [Guest and Nested Address Translation].

60:52 Reserved.

51:12 Next Table Address[51:12]/Page Address[51:12]: Specifies the SPA of the next page
descriptor entry when NextLevel != 000b or 111b; specifies the SPA of the page when Nex-
tLevel = 000b or 111b. See discussion in this section.

11:9 NextLevel: next page translation level. Specifies the level of page translation as described
in this section. The value of NextLevel cannot exceed the value of the Mode field in the
DTE (Table 7).

8:6 Ignored.

5 A: Accessed. This bit indicates whether the physical memory to which this directory points
has been accessed. The A bit is set to 1 by the IOMMU the first time the directory is either
read from or written to. The A bit is never cleared by the IOMMU. Instead, software must
clear this bit to 0 when it needs to track the frequency of physical-page accesses. IOMMU
only sets the A bit if MMIO Offset 0030h[HDSup]=1 and DTE[HAD]=01b or 11b.

4:1 Ignored

0 PR: Present. 1=the remainder of the I/O PTE contains valid information. 0=see Table 16.

[AMD Public Use]

86 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Figure 11: Address Translation Example with Skipped Level and 2-Mbyte Page

The input address in Figure 11 is a GPA that is supplied by the peripheral or translated from a GVA.

Using the nested page tables, the IOMMU translates the input GPA to an SPA within a 2-Mbyte phys-
ical page. The input address is mapped into page table offsets for the levels of address translation. The
level-4 page table offset is used to index into the level-4 page table. The level-3 table offset is zero, so
the contents of the level-4 page table entry points directly to a level-2 page table. The level-2 page
table contains an entry with the next level=0, so that entry points directly to a 2-Mbyte page and the
physical page offset is the 21 low-order bits of the input address.

Input Address (GPA)

0_0000_0000b
Level-2 Page
Table Offset

0202129303839474863

Data
Byte

219

52

1251

Device Table Entry

Level-4
Page Table

2-Mbyte
Physical

Page

Physical-
Page Offset

Level 4 Page Table Address

911

57 56

2h

Level-4 Page
Table Offset

9

52

Level-2
Page Table

0_0000_0000b000_0000b

PDE 0hPTE

52

4h

[AMD Public Use]

Architecture 87

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 12: Address Translation Example with Page Size Larger than Default Size

The top address in Figure 12 is a GPA that is supplied by the peripheral or translated from a GVA.

Using the nested page tables, the IOMMU translates the input GPA to an SPA within a 4-Mbyte phys-
ical page. The translations for level-4 and level-3 are conventional and the next level fields are used to
indicate contiguous levels of translation with no level skipping. The level-2 table contains paired
entries with the next level fields set to 7h; as a result, bit 21 of the input GPA can be treated as an
additional offset bit within a larger physical page 4 Mbytes in size. The adjacent PTE values in the
level-2 page table must be adjacent 2-Mbyte page base addresses and the lower base address value
must be set so that the page is 4-Mbyte aligned.

2.2.3.1 Host Access Support

The IOMMU supports setting Access bits in the host page table if MMIO Offset 0030h[HASup]=1.
This feature is enabled using DTE[HAD]. When enabled, IOMMU hardware sets the Access bits in
the host page table using atomic operations similar to the process described in Section 2.2.7.4 [Updat-
ing Accessed and Dirty Bits in the Guest Address Tables] on page 116. Similarly, software is respon-
sible for clearing the Access bits in the host page table using the process described in Section 2.2.7.5
[Clearing Accessed and Dirty Bits] on page 117.

When a non-default page size is used , software must OR the Access bits in all of the replicated host
PTEs used to map the page. The IOMMU does not guarantee the Access bits are set in all of the repli-
cated PTEs. Any portion of the page may have been accessed even if the Access bit is set in only one

Input Address (GPA)

Level-3 Page Level-2 Page
Table Offset

0202129303839474863

219

52

1251

Device Table Entry

Level-4
Page Table

4-Mbyte
Physical

Page

Physical-
Page Offset

Level 4 Page Table Address 4h

911

57 56

3h

Level-4 Page
Table Offset

9

52

Level-2
Page Table

0_0000_0000b000_0000b

PDE 7hPTE

Level-3
Page Table

2hPDE
52

Table Offset

7hPTE

22

1

52

Data
Byte

[AMD Public Use]

88 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

of the replicated PTEs.

Hypervisor software may use the host access bits to help decide whether a piece of guest memory
should be paged out. Such software must also ensure that the guest memory is safe to page out. The
mechanisms for doing so are outside the scope of the IOMMU specification.

2.2.3.2 Host Dirty Support

The IOMMU supports setting the Dirty bit in the lowest level of the host page table if MMIO Offset
0030h[HDSup]=1. This feature is enabled using DTE[HAD]. When enabled, IOMMU hardware sets
the Dirty bit in the host page table using an atomic operation similar to the process described in Sec-
tion 2.2.7.4 [Updating Accessed and Dirty Bits in the Guest Address Tables] on page 116. Similarly,
software is responsible for clearing the Dirty bit in the host page table using the process described in
Section 2.2.7.5 [Clearing Accessed and Dirty Bits] on page 117.

When a non-default page size is used , software must OR the Dirty bits in all of the replicated host
PTEs used to map the page. The IOMMU does not guarantee the Dirty bits are set in all of the repli-
cated PTEs. Any portion of the page may have been written even if the Dirty bit is set in only one of
the replicated PTEs.

Hypervisor software may use the host dirty bit to optimize the page out of guest memory by avoiding
redundant writes to the pagefile.

2.2.4 Sharing AMD64 Processor and IOMMU Page Tables—GPA-to-SPA

This section outlines the topics to be considered so that the host or GPA-to-SPA page tables may be
shared with an IOMMU in an AMD64 system. A more complete discussion depends on many imple-
mentation factors.

AMD64 processors and the IOMMU treat upper virtual address bits [63:48] differently. The proces-
sor requires canonical addresses (in which address bits [63:48] are equal to bit 47). By contrast, the
IOMMU is designed to support the full PCI 64-bit address space. If 6-level page tables are used, the
IOMMU can map any 64-bit address. If fewer than 6 levels are used, the IOMMU requires upper vir-
tual address bits (beyond the range mapped by the page tables) to be 0. This ensures that software can
always add levels to page tables without changing the address space as seen by devices.

In AMD64 long mode level 4 page tables, the bottom 256 entries of the root page table correspond to
positive virtual addresses with bits [63:47] all 0s and the top 256 entries correspond to negative vir-
tual addresses with bits [63:47] all 1s.

For the IOMMU to directly share processor page tables, at a minimum the Next Level fields in all
page table entries must be initialized with correct values for the IOMMU.

Once the Next Level fields are initialized, the IOMMU may directly share exactly the same page
tables. In
3-level 32-bit PAE mode this is all that's needed. However, in 4-level long mode software should be
aware that processor virtual addresses in the range FFFF_8000_0000_0000h to
FFFF_FFFF_FFFF_FFFFh correspond to I/O virtual addresses in the range 0000_8000_0000_0000h
to 0000_FFFF_FFFF_FFFFh.

If software requires 64-bit processor virtual addresses to be identical to I/O virtual addresses, includ-

[AMD Public Use]

Architecture 89

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

ing negative addresses, software needs to configure the IOMMU with the 6-level paging structure
illustrated in Figure 13, where 4 extra 4-Kbyte page tables (shaded) at levels 6, 5, and 4 are used
solely by the IOMMU, and sharing with processor page tables occurs only at levels 3 and below.

Figure 13: Sharing AMD64 and IOMMU Host Page Tables with Identical Addressing

2.2.5 Interrupt Remapping Tables

Interrupt messages use a system-reserved address range shown in Table 3. Legacy "fixed" and "arbi-
trated" Message Signaled Interrupts (MSI) are mapped through that address space where they can be
remapped by the IOMMU. Startup Int, SMI, LINT0, LINT1, NMI, INIT, and External (ExtInt) inter-
rupts are controlled individually, using the Device Table Entry (DTE) control fields. (See Table 10
and Table 19). The encoding is identical to the MT field definition (e.g., in HyperTransport)

When interrupt remapping and interrupt virtualization are active (Section 2.2.8 [Guest Virtual APIC
Table for Interrupt Virtualization]), interrupts are remapped using the remapping tables and then
posted for delivery to a guest OS. When the SMI filter is active (see Section 1.3.10 [SMI Filter]),
upstream SMI requests are controlled through the SMI filter.

...0... 00

...0...

...0... ...0... ...

(skip le
vel)

IOMMU device table entry

CPU register CR3

4th level page
tables

(CPU and
IOMMU are

separate)

3rd level page
tables (shared
by CPU and

IOMMU)

5th level page table (used
only by IOMMU)

6th level page table
(used only by IOMMU;
only table entries 0 and

127 are valid)

Shared page tables for “non-negative”
virtual addresses

Shared page tables for “negative”
virtual addresses

Host Page Table Root
Pointer

[AMD Public Use]

90 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

The IOMMU remaps HyperTransport™ addresses for fixed and arbitrated interrupts as shown in the
concatenation in Figure 14 on page 91. The offset created by this concatenation corresponds directly
to data bits 10:0 in the originating MSI interrupt message. After reading the interrupt remapping table
entry, the IOMMU creates a new interrupt message address by OR’ing IRTE[23:2] with bits [63:2] of
HyperTransport™ interrupt address range base (FFFF_FFFD_F800_0000h). Interrupt table walks are
always coherent.

Note: In previous versions of the IOMMU specification, interrupt types 0010b to 1111b with DM=1
were defined to support interrupt remapping instead of resulting in a target abort. No systems are
known to rely on the older remapping behavior.

Table 19: IOMMU Controls and Actions for Upstream Interrupts

MMIO Offset
01A0[NumIntRemapSup]

MMIO Offset
0018h[NumIntRemapMode]

Interrupt Type
(MT Encoding)

Destination
Mode (DM)

Controlled by

00b/01b XXb

0 Fixed

0

DTE and IRTE
(supports up to 512
Interrupts per function)1 Arbitrated

2
MMIO Offset
0018h[SmiFLogEn]

3/4/6 DTE[NMIPass]

5 DTE[InitPass]

7 DTE[EIntPass]

11 DTE[Lint1Pass]

14 DTE[Lint0Pass]

8/9/10/12/13/15 Target Abort

00b XXb

0-1

1

DTE and IRTE
(supports up to 512
Interrupts per function)

2-15
Target Abort
See Note below.

01b 00b/10b/11b

0-1
DTE and IRTE
(supports up to 512
Interrupts per function)

2-15
Target Abort
See Note below.

01b 01b
0-7

DTE and IRTE
(supports up to 2K
Interrupts per function)

8-15 Target Abort

10b-11b XXb N/A N/A Reserved

[AMD Public Use]

Architecture 91

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.2.5.1 Interrupt Remapping Tables, Guest Virtual APIC Not Enabled
The IOMMU remaps fixed and arbitrated interrupts as shown in Figure 14. The IOMMU uses the
information from the interrupt remapping table entry shown in Figure 15 and Table 20.

Figure 14: Interrupt Remapping Table Lookup for Fixed and Arbitrated Interrupts

To handle fixed and arbitrated interrupts with interrupt remapping, software programs the IRTE as
shown in Figure 15 and Table 20.

Figure 15: Interrupt Remapping Table Entry - Basic Format

31 24 23 16 15 8 7 6 5 4 2 1 0

Reserved Vector Destination

G
ue

st
M

od
e

DM

R
qE

oi

IntType

S
up

IO
P

F

R
em

ap
E

n

Table 20: Interrupt Remapping Table Fields - Basic Format

Bits Description

31:24 Reserved.

23:16 Vector. Specifies the interrupt vector for the interrupt.

15

24

5

MSI Data

13

Interrupt table
offset

HyperTransportTM
Address

Device Table Entry

Interrupt
Remapping
Table

Interrupt
message

15 11 810 7 0

XXXXXb
MSI Data
Bits[10:8]

MSI Data
Bits[7:0]

134179

Interrupt Remapping Table Address

12 10 9 2 1 0

MSI Data
Bits[10:8]

MSI Data
Bits[7:0]

00b

16

0

1

2

4

23

63

H
T

 I
nt

rI
nf

o
B

it
s[

4:
2]

X
H

T
 I

nt
rI

nf
o

B
it

s[
23

:1
6]

...
00

b

IRTE

...
X6

7

DM

FD_F800_0000h

[AMD Public Use]

92 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.2.5.2 Interrupt Virtualization Tables with Guest Virtual APIC Enabled

Legacy interrupts are processed using the SMI filter (see Section 2.1.5 [System Management Inter-
rupt (SMI) Controls]) and control fields in the DTE (see Section 2.2.2.1 [Device Table Entry For-
mat]).

In the base functionality, interrupt virtualization using the guest virtual APIC is not supported; for
interrupt remapping of fixed and arbitrated interrupts, see Section 2.2.5.1 [Interrupt Remapping
Tables, Guest Virtual APIC Not Enabled]. The IRTE format defined in Table 20 and Figure 15 is sup-
ported. The IRTE formats defined by Table 22, Table 23, Figure 17 and Figure 18 are not supported.

Optional features provide support for virtualization of device interrupts using the guest virtual APIC
(see MMIO Offset 0030h[GASup] and MMIO Offset 0030h[GAMSup]). Virtual interrupts are
enabled when programmed by MMIO Offset 0018h[GAEn] and MMIO Offset 0018h[GAMEn]; see
Table 21. When virtual interrupts are enabled, the IOMMU uses IRTE entries listed in Table 21 for
fixed and arbitrated interrupts. IRTE formats defined by Table 20, Table 22, Table 23, Figure 15,
Figure 17 and Figure 18 are supported and selected as shown in Table 21. When IRTE[Guest-
Mode]=0, the IOMMU uses Table 22 and Figure 17 for interrupt remapping. When IRTE[Guest-
Mode]=1, the IOMMU uses Table 23 and Figure 18 for interrupt virtualization using the guest virtual
APIC. Software must program all IOMMUs in a system to use the same size of IRTE. (In Table 21,
all IOMMUs must be programmed with the same values of MMIO Offset 0018h[GAEn] and MMIO
Offset 0018h[GAMEn].)

15:8 Destination. Specifies the APIC logical or physical address to send the interrupt to.

7 GuestMode. Must be zero for IRTE in the format defined by Figure 15 and this table. See
also Figure 18 and Table 23

6 DM: destination mode. 1=Logical destination mode. 0=Physical destination mode.

5 RqEoi: request EOI. 1=EOI cycle required.
Software Note: If RqEoi=1, software is responsible for performing the reverse mapping of
the vector number.

4:2 IntType: interrupt type. This field specifies the type of interrupt message to deliver to the
Local APIC. 000b = Fixed. 001b = Arbitrated. 010b – 111b = Reserved.

1 SupIOPF: Suppress IO_PAGE_FAULT events. 1=Supress logging when use of this remap-
ping entry causes an IO_PAGE_FAULT. 0=Log event when this entry causes an IO_PAGE_-
FAULT. See the IG control bit in the Device Table entry (Section 2.2.2.1 [Device Table
Entry Format]).
Note: SmiFLogEn independently controls the creation of IO_PAGE_FAULT log entries gen-
erated by the SMI filter (see Section 1.3.10 [SMI Filter]).

0 RemapEn. 1=Interrupt is remapped. 0=Interrupt is target aborted.
Note: SupIOPF is meaningful independent of the value of RemapEn.

Table 20: Interrupt Remapping Table Fields - Basic Format (Continued)

Bits Description

[AMD Public Use]

Architecture 93

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

When Secure Nested Paging (SNP) is enabled, virtualization of device interrupts is restricted to
devices managed by the Hypervisor or assigned to non-SNP guests. For devices assigned to SNP
guests, interrupts must be remapped using the interrupt remapping table. Refer to Table 21 for infor-
mation on supported device interrupt configuration modes.

System Software (VMM) can use the Guest Virtual APIC mechanism to deliver device interrupts to
SNP guests by:

• Creating a VMM-managed vAPIC backing page.
• Configuring interrupts from devices mapped to SNP guests with IRTE settings of GuestMode=1

and IsRun=0 to direct these interrupts to the VMM-managed vAPIC backing page.

This approach helps the VMM manage scenarios where there may be a shortage of IRR bits in the
physical APIC, particularly in systems with a high number of interrupt vectors required by devices.

When virtual interrupts are enabled by setting MMIO Offset 0018h[GAEn] and IRTE[GuestMode=1],
IRTE[IsRun], IRTE[Destination], and if present IRTE[GATag], are not cached by the IOMMU.
Modifications to these fields do not require an invalidation of the Interrupt Remapping Table.

When guest APIC virtualization is supported, the IOMMU processes upstream fixed and arbitrated

Table 21: Interrupt Virtualization Controls for Upstream Interrupts

MMIO Offset 0030h
MMIO Offset

01A0h
MMIO Offset 0018h IRTE

Size
(bits)

IOMMU Interrupt
Transformation

GASup GAMSup SNPSup SNPAVICSup GAEn GAMEn SNPAVICEn

0 XXXb X XXXb Xb XXXb XXXb
32

Interrupt remapping
(See Table 20, Figure 15).1 XXXb X XXXb 0 XXXb XXXb

1 000b X XXXb 1 XXXb XXXb

128

Interrupt remapping
(See Table 22, Figure 17.)

1 001b 0 XXXb 1 001b XXXb
Virtualized interrupts using the
guest virtual APIC
(See Table 23, Figure 18.)

1 001b 1 001b 1 001b 001b

Virtualized interrupts from
devices mapped to HV/non-
SNP Guest using the guest
virtual APIC
(See Table 23, Figure 18.)
Interrupts from devices
mapped to SNP Guest must be
delivered through Hypervisor.

1 001b 1 000b 1 001b XXXb

N/A

Target Abort. Virtualized
interrupts using guest virtual
APIC not supported in SNP
enabled system.

1 001b X 010b-111b 1 001b 010b-111b Reserved

1 010b-111b X XXXb 1 010b-111b XXXb Reserved

[AMD Public Use]

94 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

interrupts as follows:
1. The IOMMU receives the upstream interrupt request.
2. The IOMMU checks the values of MMIO Offset 0030h[GASup], MMIO Offset 0030h[GAM-

Sup], MMIO Offset 0018h[GAEn], and MMIO Offset 0018h[GAMEn].
3. The IOMMU selects the 32-bit or 128-bit IRTE formats and the corresponding table stride based

on the register settings as shown in Table 21.
4. If programmed for 32-bit mode, the IOMMU handles the interrupt as defined in Section 2.2.5.1

[Interrupt Remapping Tables, Guest Virtual APIC Not Enabled].
5. The IOMMU uses the DeviceID of the upstream interrupt to select the appropriate DTE (see Sec-

tion 2.2.2.1 [Device Table Entry Format]).
6. The IOMMU uses the Interrupt Table Root Pointer in the DTE and the incoming interrupt vector

to select an IRTE.
7. If IRTE[RemapEn]=0, then the interrupt is reported as an IO_PAGE_FAULT event (see Table 44

and Section 2.5.3).
8. If IRTE[GuestMode]=0, then use the IRTE format shown in Figure 17 and Table 22 to remap the

upstream interrupt using the IRTE information in the same manner as described in Section 2.2.5.1
[Interrupt Remapping Tables, Guest Virtual APIC Not Enabled] while using the IRTE format in
Figure 17 and Table 22.

9. If IRTE[GuestMode]=1, then treat the upstream interrupt as a guest virtual interrupt and the sup-
plied destination and vector information are used as follows using the IRTE format in Figure 18
and Table 23.
• Determine the bit index by calculating IRTE[Vector] modulo 32 (see Figure 16).
• Determine the byte offset by calculating (IRTE[Vector] / 32) << 4.
• Calculate the target byte of the virtual IRR in the guest virtual APIC backing page by adding:

IRTE[GuestVirtualAPICTableRootPointer] + 0200h + the calculated byte offset.
• Atomically set one bit using the calculated bit index within the calculated target byte.
• Read the IRTE from memory.
• If IRTE[IsRun]=0b and IRTE[GALogIntr]=1b, then the IOMMU creates a guest virtual APIC

log entry using IRTE[GATag] (see Section 2.7 [Guest Virtual APIC (GA) Logging]) and
signals an interrupt.

• If IRTE[IsRun]=1b, then the IOMMU sends a guest APIC doorbell signal using the
Destination field in Table 23. The value of Destination is obtained from the same memory
read as IRTE[IsRun].

Hardware Note: The bit index and byte offset calculations are described using an 8-bit byte for a 1-
byte memory operation. The calculation method may be converted to a multi-byte-wide operation that
does not exceed 256 bits and the atomic-OR operation may use any byte width that is a power of 2
between 1 and 32 bytes, inclusive, by scaling the divisor. Using an 8-bit example, the bits of the vir-
tual IRR in the virtual APIC backing page are numbered as in Figure 16 (where n is calculated as
IRTE[Vector] modulo 8):

[AMD Public Use]

Architecture 95

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 16: Bit Numbering of Virtual IRR in the Virtual APIC Backing Page

To handle an interrupt for remapping when the guest APIC is enabled, software programs the IRTE as
shown in Figure 17 and Table 22 with GuestMode=0.

Figure 17: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=0

7 6 5 4 3 2 1 0

Byte n

127 96

Reserved

95 72 71 64

Reserved Vector

63 32

Reserved

31 16 15 8 7 6 5 4 2 1 0

Reserved Destination

G
ue

st
M

od
e=

0

D
M

R
qE

O
I

IntType

S
up

IO
P

F

R
em

ap
E

n

Table 22: IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=0

Bits Description

127:72 Reserved when RemapEn=1. Ignored when RemapEn=0.

71:64 Vector. Specifies the interrupt vector for the upstream interrupt.

63:16 Reserved when RemapEn=1. Ignored when RemapEn=0.

15:8 Destination. Specifies the APIC logical or physical address to which to send the interrupt.

7 GuestMode. Must be zero for IRTE in the format defined by Figure 17 and this table. See
also Figure 18 and Table 23

6 DM: destination mode. 1=Logical destination mode. 0=Physical destination mode.

5 RqEoi: request EOI. 1=EOI cycle required.
Software Note: If RqEoi=1, software is responsible for performing the reverse mapping of
the vector number.

4:2 IntType: interrupt type. This field specifies the type of interrupt message to deliver to the
Local APIC.

000b Fixed 001b Arbitrated
010b Reserved 011b Reserved
100b Reserved 101b Reserved
110b Reserved 111b Reserved

[AMD Public Use]

96 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

To handle an interrupt using the guest APIC, software programs the IRTE as shown in Figure 18 and
Table 23 with GuestMode=1.

Figure 18: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=1

1 SupIOPF: suppress IO_PAGE_FAULT events. 1=Supress logging when use of this remap-
ping entry causes an IO_PAGE_FAULT. 0=Log event when this entry causes an IO_PAGE_-
FAULT. See the IG control bit in the Device Table entry (Section 2.2.2.1 [Device Table
Entry Format]).
Note: SmiFLogEn independently controls the creation of IO_PAGE_FAULT log entries gen-
erated by the SMI filter (see Section 1.3.10 [SMI Filter]).

0 RemapEn. 1=Interrupt is remapped. 0=Interrupt is target aborted.
Note: SupIOPF is meaningful independent of the value of RemapEn.

127 116 115 96

Reserved Guest Virtual APIC Table Root Pointer[51:32]

95 76 75 72 71 64

Guest Virtual APIC Table Root Pointer[31:12] Reserved Vector

63 32

GATag[31:0]

31 16 15 9 8 7 6 5 4 3 2 1 0

Reserved Destination

G
ue

st
M

od
e=

1

Is
R

un

G
A

P
P

ID
is

R
es

er
ve

d

G
A

L
og

In
tr

S
up

IO
P

F

R
em

ap
E

n

Table 23: IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=1

Bits Description

127:116 Reserved when RemapEn=1. Ignored when RemapEn=0.

115:76 Guest Virtual APIC Table Root Pointer. Specifies the system physical address of the APIC
backing page when RemapEn=1.

75:72 Reserved when RemapEn=1. Ignored when RemapEn=0.

71:64 Vector[8:0]. Used to calculate the address within the guest virtual APIC backing page.

63:32 GATag: The GATag field is used when the IOMMU writes to the guest virtual APIC log (see Section
2.7 [Guest Virtual APIC (GA) Logging]).

31:16 Reserved.

15:8 Destination[7:0]. Destination core for the Guest Virtual APIC doorbell message.

Table 22: IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=0

Bits Description

[AMD Public Use]

Architecture 97

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.2.5.3 IOMMU x2APIC Support

The IOMMU supports the extensions of interrupt processor addressability when the system is in
x2APIC mode. The support of this capability is indicated in MMIO 0x30 [XTSup]=1. In systems
with x2APIC enabled, software must set MMIO 0x18[XTEn]=1 and MMIO 0x18[GAEn]=1. This
enables the use of the 128-bit IRTE format with 32-bit destination field. Even if Guest Virtual APIC
will not be used, software must set MMIO 0x18[GAEn]=1. In this case, software should set all IRTEs
with IRTE[GuestMode]=0.

When MMIO 0x18[IntCapXTEn]=1, interrupts originating from the IOMMU itself are sent based on
the programming in XT IOMMU Interrupt Control Registers in MMIO 0x170-0x180 instead of the
programming in the IOMMU's MSI capability registers.

7 GuestMode. Must be 1 for an IRTE in the format defined by Figure 18 and this table to indicate this
IRTE contains guest virtual APIC information. When GuestMode=0, see Figure 15 and Table 20.

6 IsRun: is-running hint. 0b=the guest is not running and the interrupt information will be logged to
the guest APIC memory page and the guest APIC log (see Section 2.7 [Guest Virtual APIC (GA)
Logging]). 1b=the guest is running and can accept the virtualized interrupt.

5 GAPPIDis:
1 = IOMMU suppresses GAPPI Interrupt notifications but continues to log guest interrupts in the
IRR.
0 = IOMMU generates GAPPI interrupt if all the guest IRR bits were previously clear prior to the
last IRR update.
The bit is only applicable when GuestMode=1 and MMIO Offset 0018h[GAPPIEn]=1.
The bit is Reserved when MMIO Offset 01A0h[GAPPIDisSup]=0

4:3 Reserved.

2 GALogIntr:
1=Write Guest virtual APIC log entry into GA Log buffer using IRTE[GATag] when
IRTE[isRun]=0b.
0=Guest virtual APIC log entry is suppressed when IRTE[isRun]=0b.

1 SupIOPF. Not governed by RemapEn.

0 RemapEn: remap enable. This bit indicates the IRTE fields, except SupIOPF, are valid. 0=the IRTE
contents are ignored by hardware except SupIOPF. When the IOMMU attempts to use the contents
of this IRTE, it will generate an IO_PAGE_FAULT (see Section 2.5.3 [IO_PAGE_FAULT Event]).
1=the guest virtual APIC table root pointer, vector, GATag, destination, GuestMode, and IsRun fields
are valid.

Table 23: IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=1 (Continued)

Bits Description

[AMD Public Use]

98 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Figure 19: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=0

Figure 20: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=1

Destination[31:8] are reserved and MSZ when MMIO 0x30[XTSup]=0 or MMIO 0x18[XTEn]=0.

31

Destination[23:0]

8

G
u

e
st

M
o

d
e

D
M

R
q

E
o

i

IntType

Su
p

IO
P

F

R
em

ap
En

7 06 5 4 2 1

63

Reserved

32

95

Reserved

64

Vector

72 71

127

Reserved

96

Destination[31:24]

120 119

31

Destination[23:0]

8

G
u

es
tM

o
d

e

Is
R

u
n

G
A

Lo
gI

n
tr

R
e

se
rv

e
d

Su
p

IO
P

F

R
em

ap
En

7 06 5 4 2 1

63

GATag[31:0]

32

95

Guest Virtual APIC Table Root Pointer[31:12]

64

Vector

72 71

127

Reserved

96

Destination[31:24]

120 119

76

Reserved

75

116 115

Guest Virtual APIC Table Root Pointer[51:32]

3

G
A

P
P

ID
is

[AMD Public Use]

Architecture 99

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.2.5.4 Guest APIC Physical Processor Interrupt

When MMIO Offset 0030h[GAPPISup] = 1, the IOMMU supports an alternative mode for handling
AVIC guest interrupts to non-running guests which avoids the use of the guest vAPIC virtual interrupt
request log (GALog). This mode is enabled by setting MMIO Offset 0018h[GAPPIEn]=1. Under this
mode, guest interrupts (IRTE[GuestMode]=1) update the vAPIC backing page IRR status as normal.
Writing to the GALog is suppressed for non-running guests (IRTE[IsRun]=0) if IRTE[GALogIntr]=0.
Instead, in GAPPI mode, a GAPPI interrupt is generated if all of the guest IRR bits were previously
clear prior to the last IRR update. This indicates the new interrupt is the first pending interrupt to the
vCPU. The GAPPI interrupt is used to signal Hypervisor software to schedule one or more vCPUs to
execute pending interrupts. The GAPPI interrupt is issued with the following parameters:

Destination = IRTE[destination]

Vector = IRTE[GATag[7:0]]

Message Type = 0

Destination Mode = 0

RQEOI = 0

Implementations may not be able to perfectly determine if all of the IRR bits were previously clear
prior to updating the vAPIC backing page to set IRR. Spurious interrupts may be generated as a
result. Software must be designed to handle this possibility.

IOMMU optionally supports suppressing GAPPI Interrupt but still has the virtual interrupt logged in
the IRR. Support for this feature is controlled through MMIO Offset 01A0h[GAPPIDisSup] and
IRTE[GAPPIDis] fields when IRTE[GuestMode]=1. When MMIO Offset 01A0h[GAPPIDisSup]=1
and IRTE[GAPPIDis]=1, IOMMU suppresses the GAPPI Interrupt but still updates the vAPIC back-
ing page IRR status as normal.

2.2.6 I/O Page Tables for Guest Translations

When MMIO Offset 0030h[GTSup] = 1, the IOMMU supports guest address translations.

The use of guest address translation is controlled by values in the DTE (GV and GLX), MMIO Offset
0018h[GTEn], and MMIO Offset 0030h[GLXSup]. Software can use guest address translation by
programming hardware support as shown as in Table 5. The size of the guest address is defined by
MMIO Offset 0030h[GATS]; exceeding this limit generates an IO_PAGE_FAULT.

Table 24: Guest Address Translation Controls

MMIO Offset 0030h
MMIO
Offset
0018h

Device Table Entry Description

GTSup GLXSup GTEn GV GLX (See also Table 11)

0 XXb X MBZ MBZ Guest translation is not supported by the
IOMMU.

1 XXb 0 X XX Guest translation is not active for the IOMMU.

[AMD Public Use]

100 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

When guest address translation is active, the IOMMU will process a guest virtual addresses when it
has a valid PASID (see Section 2.2.7.7 [PCIe® TLP PASID Prefix]).

2.2.6.1 Support for AMD64 Guest Page Table NX field

IOMMU optionally supports the enforcing of guest page no-execute protection. If the NX bit is set in
a page table entry at any level of the page table in the guest page table walk, the page is designated as
a non-executable page. Attempted access to a non-executable page by I/O devices with the EXE bit
set in PCIe TLP PASID Prefix is blocked and an event is logged in the event log. Support for this fea-
ture is indicated by MMIO Offset 0030h[NXSup] = 1.

2.2.6.2 AMD64 Guest Page Table Access Protection

IOMMU optionally supports the blocking of attempted access by I/O devices to pages that are desig-
nated as requiring supervisor privilege. If the U/S bit is 0 in a page table entry at any level of the page
table in the guest page table walk, the page is designated as requiring supervisor-level privilege.

Two levels of protection are provided: privilege checking and global privileged access abort. The
level of protection is controlled by programming the PrivAbrtEn field of the IOMMU Control Regis-
ter [MMIO Offset 0018h]. If PrivAbrtEn is programmed with the value 00b, any access by an I/O
device with the PMR bit of the TLP PASID Prefix cleared (PMR = 0; User-level privilege) is blocked
for a page that is designated as requiring supervisor-level privilege and an event is logged in the event
log. If PrivAbrtEn is programmed to the value 01b, any access by an I/O device to a page designated
as requiring supervisor-level privilege is blocked regardless of the setting of the PMR bit and an event
is logged in the event log.

Support for this feature is indicated by MMIO Offset 0030h[USSup] = 1.

2.2.6.3 Guest CR3 Table

When guest translation is active (see Table 24), the DTE contains an SPA or GPA pointer (depending
on MMIO Offset 0018h[GCR3TRPMode]) to a GCR3 table containing GPA entries that are struc-
tured like processor CR3 values. The GCR3 table root pointer in the DTE is used when a transaction
contains a valid PASID. When valid and present, the PASID is used to walk the guest CR3 table.
When MMIO Offset 0030h[GLXSup]=00b, hardware supports a one-level lookup table so the table
must be a 4-Kbyte page and must be naturally aligned. Figure 21 illustrates a lookup for guest transla-

1 XXb 1 0 XX Guest translation is not active for the DeviceID.

1 00b, 01b 1 1 00b Guest translation is active. The GCR3 table is a
one-level table in system physical memory.

1 01b 1 1 01b Guest translation is active. The GCR3 table is a
two-level table.

Table 24: Guest Address Translation Controls (Continued)

MMIO Offset 0030h
MMIO
Offset
0018h

Device Table Entry Description

GTSup GLXSup GTEn GV GLX (See also Table 11)

[AMD Public Use]

Architecture 101

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

tion tables.

Software Note: IOMMU TLBs are not cleared when a value is changed in the guest CR3 table and
software must issue invalidation commands. (See Section 2.4 [Commands].)

Figure 21: Guest CR3 Table, 1 Level

Figure 21 shows how a DTE links to a guest page table using a guest CR3 level 1 table. When guest
translation is active (see Table 24) with DTE[GLX] = 00b and the peripheral supplies a valid PASID,
the lower portion of the PASID field is used to index the guest CR3 level 1 table to select a CGR3
base pointer that is the root of a guest page table. The IOMMU ignores the upper PASID bits when
DTE[GLX] = 00b.

IOMMU optionally supports supplying GPA based pointer to Guest CR3 Table inside DTE instead of
SPA. Support for this feature is indicated through MMIO Offset 01A0h[GCR3TRPModeSup] and
MMIO Offset 0018h[GCR3TRPMode]. When MMIO Offset 01A0h[GCR3TRPModeSup]=1 and
MMIO Offset 0018h[GCR3TRPMode]=1, the GCR3 table root pointer inside the DTE contains a
GPA pointing to the guest CR3 level 1 table. The GPA will be translated by the IOMMU using the
nested page table referenced by DTE[Host Page Table Root Pointer]. (See Section 2.2.3 [I/O Page
Tables for Host Translations].) When MMIO Offset 01A0h[GCR3TRPModeSup]=0 or if MMIO
Offset 0018h[GCR3TRPMode]=0, the GCR3 table root pointer inside the DTE contains an SPA
pointing to the guest CR3 level 1 table.

Each valid GCR3 base pointer in the guest CR3 level 1 table is the GPA of a guest page table. Guest
page tables may be Level 4 or Level 5 page tables starting with a PML4 table or a PML5 table (see
AMD64 processor architecture specification), respectively. The start level is controlled through
MMIO Offset 0030h[GATS] and DTE[GuestPagingMode] fields. See Support for AMD64 Level 5
(PML5E) Page Table.

The IOMMU translates a GPA in the GCR3 level 1 table to a system physical address as needed.
GCR3 base pointer in Figure 21 is structured as valid bit with a 4-Kbyte aligned pointer to the guest
page table using the formats specified in Table 25 and Figure 22.

Guest CR3
Level-1
Table

...

Guest Page
Table

...

Guest Page
Table

DTE[GCR3 Table Root Pointer]
DTE[GLX]==00b

Device Table

PML5E/
PML4E

GCR3
Base

Pointer
GCR3
Base

Pointer

PML5E/
PML4E

The Device Table is indexed by DeviceID.
Guest CR3 L1 Table is indexed by PASID[8:0].
Guest page tables are indexed by GVA.
DTE GCR3 Table Root Pointer can be Guest
Physical Address or System Physical Address,
depending on the GCR3TRPMode. CR3 Base
Pointers and Guest Page Table entries are Guest
Physical Addresses pointing to PML5E or PM4E,
depending on the number of Guest Levels
supported.

[AMD Public Use]

102 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

The structure in Figure 21 on page 101 may be used when software programs DTE[GLX] = 00b. In
this mode, PASID values up to 9 bits long are supported . When software programs DTE[GLX] =
01b, PASID values up to18 bits long are supported . The two-level structure in Figure 23 will be used.
Software may program DTE[GLX]=10b to enable a three-level structure used to support larger
PASID widths up to 20 bits.

Table 25: AMD64 Guest CR3 Level-1 Table Format

Byte Offset Guest CR3 Base Table Contents

0 GCR3 Base Pointer entry for PASID0 (GPA)

8 CGR3 Base Pointer entry for PASID1 (GPA)

16 GCR3 Base Pointer entry for PASID2 (GPA)

... ...

4088 GCR3 Base Pointer entry for PASID511 (GPA)

63 52 51 32

Reserved GCR3 Base Page Pointer[51:32]

31 12 11 5 4 3 2 1 0

Guest Page Pointer[31:12] Reserved Ign Rsvd V

Figure 22: AMD64 GCR3 Base Pointer Entry Format

Table 26: AMD64 GCR3 Base Pointer Entry Fields

Bits Description

63:52 Reserved when V=1. Ignored when V=0.

51:12 Guest Page Table Pointer. Specifies a GPA base table address when V=1.

11:5 Reserved when V=1. Ignored when V=0.

4:3 Ignored. The PCD and PWT bits used in the processor CR3 register are ignored by the IOMMU.

2:1 Reserved when V=1. Ignored when V=0.

0 V: Valid. Valid bit for the GCR3 base table pointer. 0=the GCR3 base pointer is ignored by hardware.
1=the GCR3 base pointer is the GPA of the root page of a guest page table.

[AMD Public Use]

Architecture 103

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 23: Guest CR3 Table, 2 Level

Figure 22 shows how a DTE links to a guest page table using a two-level guest CR3 table. When
DTE[GLX]=01b and guest translation is active, the GCR3 table root pointer in the DTE is the SPA or
GPA (depending on MMIO Offset 0018h[GCR3TRPMode]) of a guest CR3 level-2 table; each valid
GCR3 base table pointer in the guest CR3 level-2 table is the GPA of a guest CR3 level-1 table.

When a peripheral supplies an address with a valid PASID and DTE[GLX] = 01b, the IOMMU trans-
lates the GPA in the GCR3 level-2, GCR3 level-1, and guest page table to an SPA as needed. The
guest CR3 level-2 table is indexed using PASID[17:9] . Upper PASID bits are ignored.

Each GCR3 level-2 base pointer diagram in Figure 24 is structured as valid bit with a 4-Kbyte aligned
pointer to the guest page table using the formats specified in Table 27 and Figure 24. GCR3 level-1
tables use the format specified in Table 25 and Table 26 on page 102 and Figure 22 on page 102.

Table 27: Guest CR3 Level-2 Table Format

Byte Offset Guest CR3 Level-2 Table Contents

0 GCR3 Base Table Pointer to GCR3 Level-1 Table0 (GPA)

8 CGR3 Base Table Pointer to GCR3 Level-1 Table1 (GPA)

Guest CR3
Level-2
Table

...

Guest Page
Table

...

Guest Page
Table

Guest CR3
Level-1
Table

Guest CR3
Level-1
Table

Guest Page Table

...

PML5E/
PML4E

GCR3
Base

Pointer

GCR3
Base

Pointer

PML5E/
PML4E

PML5E/
PML4E

GCR3
Base

Pointer

GCR3
Base

Pointer

GCR3
Base

Pointer

GCR3
Base

Pointer

GCR3
Base

Pointer

DTE[GCR3 Table Root Pointer]
DTE[GLX]==01b

Device Table

The Device Table is indexed by DeviceID.

Guest CR3 Level-2 Table and GCR3 Level-1 Tables are
indexed using PASID.

Guest page tables are indexed by GVA.

DTE GCR3 Table Root Pointer can be Guest Physical
Address or System Physical Address, depending on the
GCR3TRPMode.

CR3 Base Pointers and Guest Page Table entries are
Guest Physical Addresses pointing to PML5E or PM4E,
depending on the number of Guest Levels supported

[AMD Public Use]

104 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Each GCR3 base table pointer in Table 27 is structured as a valid bit with a 4-Kbyte aligned GPA of a
GCR3 table level-1 table.

The IOMMU uses a guest CR3 level-3 table when DTE[GLX]=10b. The guest CR3 level-3 table is
pointed to by the DTE and the structure is the same as the guest CR3 level-2 table. The guest CR3
level-3 table is indexed using PASID[19:18] . The IOMMU ignores any data in the unused portion of
the CR3 level-3 table.

The AMD64 long mode page table structure is illustrated in Figure 25. The address translation page
tables in Figure 25 contain guest physical addresses that must be translated by the IOMMU to access
system memory (PML5E, PML4E, PDPE, PDE, and PTE). A full nested translation is illustrated in
Figure 40. The fields in the AMD64 page table formats are the same for corresponding steps of a
translation and are replicated here for clarity. Specifically:

• PLM5E formats are the same in Figure 26, Figure 32, and Figure 37.
• PML4E formats are the same in Figure 27, Figure 33, and Figure 38.
• PDPE formats are the same in Figure 28, Figure 34, and Figure 39.
• PDE formats are the same in Figure 29 and Figure 35.

16 GCR3 Base Table Pointer to GCR3 Level-1 Table2 (GPA)

... ...

4088 GCR3 Base Table Pointer to GCR3 Level-1 Table511 (GPA)

63 52 51 32

Reserved GCR3 Level-1 Base Table Pointer[51:32]

31 12 11 5 4 3 2 1 0

GCR3 Level-1 Base Table Pointer[31:12] Reserved Ign Rsvd V

Figure 24: Guest CR3 Level-2 Base Table Pointer Format

Table 28: Guest CR3 Level-2 Base Table Pointer Fields

Bits Description

63:52 Reserved when V=1. Ignored when V=0.

51:12 GCR3 Level-1 Base Table Address. Specifies a GPA base table address when V=1. Ignored when V=0.

11:5 Reserved when V=1. Ignored when V=0.

4:3 Ignored. The PCD and PWT bits used in the processor CR3 are ignored by the IOMMU.

2:1 Reserved when V=1. Ignored when V=0.

0 V: Valid. Valid bit for the GCR3 level-1 base table address. 1=the GCR3 base pointer points to a valid
table of GCR3 level-1 pointer values. 0=the GCR3 base pointer is ignored by hardware.

Table 27: Guest CR3 Level-2 Table Format (Continued)

Byte Offset Guest CR3 Level-2 Table Contents

[AMD Public Use]

Architecture 105

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.2.6.4 Support for AMD64 Level 5 (PML5E) Page Table

IOMMU optionally supports Level 5 Guest Page Table containing PML5E entries. Support for this
feature is controlled through MMIO Offset 0030h[GATS] and per device DTE[GuestPagingMode]
field. When MMIO Offset 0030h[GATS]=01b, IOMMU supports a maximum of five translation
levels for guest address translation and the start level is indicated through DTE[GuestPagingMode].
When DTE[GuestPagingMode] = 01b, the GCR3 base table address inside the Guest CR3 table
points to a Level 5 Page table containing PML5Es, otherwise it points to a Level 4 Page table
containing PML4Es. GVA bits [56:48] are used to index into the Level 5 Page table to select the
PML5E.

2.2.6.5 AMD64 4-Kbyte Page Translation
The 4-Kbyte page table formats are defined by the AMD64 processor architecture and interpreted by
the IOMMU as in Figure 27, Figure 28, Figure 29, Figure 30, and Table 29. The Page-Map Level-5
Table Address, PML4E, PDPE, PDE, and PTE are guest physical addresses that must be translated by
the IOMMU using nested page tables to be system physical addresses. See Section 2.2.3 [I/O Page
Tables for Host Translations].

Figure 25: AMD64 Long Mode 4-Kbyte Page Address Translation

63 52 51 32

NX Available Guest-Physical Page-Directory-Pointer Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory-Pointer Base Address[31:12] AVL MBZ

IG
N A

P
C

D

PW
T

U
/S

R
/W P

Figure 26: AMD64 Long Mode 4-Kbyte PML5E Format

Page-Map
Level-5 Offset

Sign-extend

4863 56

Page-Map
Level-4 Offset

394757

Page-Directory
Offset

Page-Directory-
Pointer Offset

2129

Page-Table
Offset

203038 12

Physical-Page
Offset

11 0

PML5E

9

PML4E

9

52

PDPE

9

PDE

9

5252

PTE

52 52

Data
Byte

4-Kbyte
Physical

Page

Page-Map Level-5 Table Address

51 1211
V=1

0
GCR3 Table Entry

52

9 12

[AMD Public Use]

106 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

63 52 51 32

NX Available Guest-Physical Page-Directory-Pointer Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory-Pointer Base Address[31:12] AVL MBZ

IG
N A

P
C

D

PW
T

U
/S

R
/W P

Figure 27: AMD64 Long Mode 4-Kbyte PML4E Format

63 52 51 32

NX Available Guest-Physical Page-Directory Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory Base Address[31:12] AVL MBZ

IG
N A

P
C

D

PW
T

U
/S

R
/W P

Figure 28: AMD64 Long Mode 4-Kbyte PDPE Format

63 52 51 32

NX Available Guest-Physical Page-Table Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Table Base Address[31:12] AVL

IG
N 0

IG
N A

P
C

D

PW
T

U
/S

R
/W P

Figure 29: AMD64 Long Mode 4-Kbyte PDE Format

63 52 51 32

NX Available Guest-Physical Page Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page Base Address[31:12] AVL G

PA
T D A

P
C

D

PW
T

U
/S

R
/W P

Figure 30: AMD64 Long Mode 4-Kbyte PTE Format

Table 29: IOMMU Interpretation of AMD64 Page Table Fields for 4-Kbyte Page
Translation

Bits Description

63 NX: No execute. 0=fetch for execution is allowed. 1=fetch for execution is blocked. Ignored by the
IOMMU if not implemented (see MMIO Offset 0030h[NXSup]). This bit controls the ability to
execute code from all physical pages mapped by the table entry. The no-execute protection check
applies to all privilege levels; it does not distinguish between supervisor and user-level accesses.

62:52 Available. Ignored by the IOMMU.

51:12 Guest-Physical Page Base Address. IOMMU uses same meaning as AMD64 processor; specifies a
guest-physical base address when P=1. For 4-Kbyte pages, bits 11:0 are assumed to be zero; for
2-Mbyte pages, bits 20:0 are assumed to be zero; and for 1-Gbyte pages, bits 29:0 are assumed to be
zero.

[AMD Public Use]

Architecture 107

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.2.6.6 AMD64 2-Mbyte Page Translation
The 2-Mbyte page table formats are defined by the AMD64 processor architecture and interpreted by
the IOMMU as in Figure 32, Figure 33, Figure 34, Figure 35, and Table 30.

11:9 AVL: Available. Ignored by the IOMMU.

8 G: Global Page. For 4-Kbyte page PTE this bit is ignored by the IOMMU.

IGN: Ignored. For 4-Kbyte page PDE this bit is ignored by the IOMMU.

MBZ: Must be zero. For 4-Kbyte page PML5E, PML4E, and PDPE this bit must be zero.

7 PAT: Page-Attribute Table. For 4-Kbyte page PTE this bit is ignored by the IOMMU.

MBZ: Must be zero. For 4-Kbyte page PML5E, PML4E, PDPE, and PDE this bit must be zero.

6 D: Dirty. For 4-Kbyte page PTE this bit is present in the lowest level of the page-translation
hierarchy. This bit indicates whether the page-translation table or the physical page to which this
entry points has been written to by a peripheral. The D bit is set to 1 by the IOMMU the first time the
a peripheral writes to the physical page. The D bit is never cleared by the IOMMU. See Section 2.2.7
[Guest and Nested Address Translation].

IGN: Ignored. For 4-Kbyte page PML5E, PML4E, PDPE, and PDE this bit is ignored by the
IOMMU.

5 A: Accessed. This bit indicates whether the page-translation table or the physical page to which this
entry points has been accessed by an IOMMU or processor. The A bit is set to 1 by the IOMMU the
first time the table or physical page is either read from or written to. The A bit is never cleared by the
IOMMU. See Section 2.2.7 [Guest and Nested Address Translation].

4 PCD: Page-level Cache Disable. Ignored by the IOMMU.

3 PWT: Page-level Writethrough. Ignored by the IOMMU.

2 U/S: User/Supervisor. IOMMU uses same meaning as AMD64 processor page tables. 0=access is
restricted to supervisor level. 1=both user and supervisor access is allowed.
Software Note: For a peripheral not using U/S, software should program the bit to signal user mode.
If MMIO Offset 0030h[USSup] = 0, this field is ignored.

1 R/W: Read/Write. This bit controls read/write access to all physical pages mapped by the table
entry. 0=access is read-only. 1=access is either read or write. Actual permissions applied to a given
page are cumulatively ORed during the page-table walk. The IOMMU converts this status to
separate read- and write-enable bits where required.

0 P: Present. Present bit indicates whether the page-translation table or guest physical page is loaded in
physical memory. 0=page is not present. 1=page is present. When P=0, all the remaining bits in this
data structure entry are available to software and are not used by the IOMMU. Entries with P=0 are
never cached in an IOMMU TLB nor will the IOMMU set the Accessed or Dirty bit for the table
entry.

Table 29: IOMMU Interpretation of AMD64 Page Table Fields for 4-Kbyte Page
Translation (Continued)

Bits Description

[AMD Public Use]

108 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Figure 31: AMD64 Long Mode 2-Mbyte Page Address Translation

63 62 52 51 32

NX Available Guest-Physical Page-Directory-Pointer Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory-Pointer Base Address[31:12] AVL MBZ

IG
N A

P
C

D

P
W

T

U
/S

R
/W P

Figure 32: AMD64 Long Mode 2-Mbyte PML5E Format

63 52 51 32

NX Available Guest-Physical Page-Directory-Pointer Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory-Pointer Base Address[31:12] AVL MBZ

IG
N A

P
C

D

P
W

T

U
/S

R
/W P

Figure 33: AMD64 Long Mode 2-Mbyte PML4E Format

63 52 51 32

NX Available Guest-Physical Page-Directory Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory Base Address[31:12] AVL MBZ

IG
N A

P
C

D

PW
T

U
/S

R
/W P

Figure 34: AMD64 Long Mode 2-Mbyte PDPE Format

Page-Map
Level-5 Offset

Sign-extend

4863 56

Page-Map
Level-4 Offset

394757

Page-Directory
Offset

Page-Directory-
Pointer Offset

2129 203038

Physical-Page Offset

0

PML5E

9

PML4E

9

52

PDPE

9

PDE

9

5252

21

52

Data
Byte

2-Mbyte
Physical

Page

Page-Map Level-5 Table Address

51 1211
V=1

0
GCR3 Table Entry

52

[AMD Public Use]

Architecture 109

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

63 52 51 32

NX Available Guest-Physical Page-Table Base Address[51:32]

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Table Base
Address[31:21]

Reserved (MBZ)

PA
T AVL G 1 D A

P
C

D

P
W

T

U
/S

R
/W P

Figure 35: AMD64 Long Mode 2-Mbyte PDE Format

Table 30: IOMMU Interpretation of AMD64 Page Table Fields for 2-Mbyte Page Translation

Bits Description

63 NX: No execute. 0=fetch for execution is allowed. 1=fetch for execution is blocked. Ignored by the
IOMMU if not implemented (see MMIO Offset 0030h[NXSup]).

62:52 Available. Ignored by the IOMMU.

51:21 Guest-Physical Page Base Address[51:21]. Specifies a guest-physical base address when P = 1.

20:13 Guest-Physical Page Base Address[20:13]. For 2-Mbyte page PML5E, PML4E, and PDPE,
specifies a guest-physical base address when P = 1.

Reserved. For 2-Mbyte page PDE, must be zero.

12 Guest-Physical Page Base Address[12]. For 2-Mbyte page PML5E, PML4E, and PDPE, specifies a
guest-physical base address when P = 1.

PAT: Page Attribute Table. For 2-Mbyte page PDE, this bit is ignored by the IOMMU.

11:9 AVL: Available. Ignored by the IOMMU.

8 G: Global Page. For 2-Mbyte page PTE, this bit is ignored by the IOMMU.

MBZ. For 2-Mbyte page PML5E, PML4E, PDPE, and PDE, this bit must be zero.

7 1b. For 2-Mbyte page PDE, this bit must be 1b.

MBZ: Must be zero. For 2-Mbyte page PML5E, PML4E, and PDPE, this bit must be zero.

6 D: Dirty. For 2-Mbyte page PDE, this bit is only present in the lowest level of the page-translation
hierarchy. This bit indicates whether the page-translation table or the physical page to which this
entry points has been written to by a peripheral. The D bit is set to 1 by the IOMMU the first time the
a peripheral writes to the physical page. The D bit is never cleared by the IOMMU. See Section 2.2.7
[Guest and Nested Address Translation].

IGN: Ignored. For 2-Mbyte page PML5E, PML4E, and PDPE, this bit is ignored by the IOMMU.

5 A: Accessed. This bit indicates whether the page-translation table or the physical page to which this
entry points has been accessed by an IOMMU or processor. The A bit is set to 1 by the IOMMU the
first time the table or physical page is either read from or written to. The A bit is never cleared by the
IOMMU. See Section 2.2.7 [Guest and Nested Address Translation].

4 PCD: Page-level Cache Disable. Ignored by the IOMMU.

3 PWT: Page-level Writethrough. Ignored by the IOMMU.

[AMD Public Use]

110 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.2.6.7 AMD64 1-Gbyte Page Translation
The 1-Gbyte page table formats are defined by the AMD64 processor architecture and interpreted by
the IOMMU as in Figure 38, Figure 39, and Table 31.

Figure 36: AMD64 Long Mode 1-Gbyte Page Address Translation

2 U/S: User/Supervisor. IOMMU uses same meaning as AMD64 processor. 0=access is restricted to
supervisor level. 1=both user and supervisor access is allowed.
Software Note: For a peripheral not using U/S, software should set the bit to signal supervisor
mode. If MMIO Offset 0030h[USSup] = 0, this field is ignored.

1 R/W: Read/Write. This bit controls read/write access to all physical pages mapped by the table entry.
0=access is read-only. 1=access is either read or write. Actual permissions applied to a given page
are cumulatively ORed during the page-table walk. The IOMMU converts this status to separate
read- and write-enable bits where required.

0 P: Present. Present bit indicates whether the page-translation table or guest physical page is loaded in
physical memory. 0=page is not present. 1=page is present. When P=0, all the remaining bits in this
data structure entry are available to software and are not examined by the IOMMU. Entries with P=0
are never cached in an IOMMU TLB nor will the IOMMU set the Accessed or Dirty bit for the table
entry.

63 62 52 51 32

NX Available Guest-Physical Page-Directory-Pointer Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory-Pointer Base Address[31:12] AVL MBZ

IG
N A

P
C

D

PW
T

U
/S

R
/W P

Figure 37: AMD64 Long Mode 1-Gbyte PML5E Format

Table 30: IOMMU Interpretation of AMD64 Page Table Fields for 2-Mbyte Page Translation (Continued)

Bits Description

Page-Map
Level-5 Offset

Sign-extend

4863 56

Page-Map
Level-4 Offset

394757

Page-Directory-
Pointer Offset

293038

Physical-Page Offset

0

PML5E

9

PML4E

9

52

PDPE

9

5252

30

Data
Byte

1-Gbyte
Physical Page

Page-Map Level-5 Table Address

51 1211
V=1

0
GCR3 Table Entry

52

[AMD Public Use]

Architecture 111

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

63 52 51 32

NX Available Guest-Physical Page-Directory-Pointer Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory-Pointer Base Address[31:12] AVL MBZ

IG
N A

P
C

D

PW
T

U
/S

R
/W P

Figure 38: AMD64 Long Mode 1-Gbyte PML4E Format

63 52 51 32

NX Available Guest-Physical Page-Directory Base Address[51:32]

31 30 12 11 9 8 7 6 5 4 3 2 1 0

[31:30] Reserved (MBZ)

PA
T AVL G 1 D A

P
C

D

PW
T

U
/S

R
/W P

Figure 39: AMD64 Long Mode 1-Gbyte PDPE Format

Table 31: IOMMU Interpretation of AMD64 Long Mode 1-Gbyte Page Table Fields

Bits Description from AMD64 processor specification

63 NX: No execute. 0=fetch for execution is allowed. 1=fetch for execution is blocked. Ignored by the
IOMMU if not implemented (see MMIO Offset 0030h[NXSup]).

62:52 Available. Ignored by the IOMMU.

51:31 Guest-Physical Page Base Address[51:31]. For 1-Gbyte PML5E, PML4E, and PDPE, specifies a
guest-physical base address when P=1.

29:13 Guest-Physical Page Base Address[29:13]. For 1-Gbyte PML5E and PML4E, specifies a guest-
physical base address when P=1.

Reserved. For 1-Gbyte page PDPE, must be zero

12 Guest-Physical Page Base Address[12]. For 1-Gbyte PML5E and PML4E, specifies a guest-
physical base address when P = 1.

PAT: Page Attribute Table. For 1-Gbyte page PDPE this bit is ignored by the IOMMU.

11:9 AVL: Available. Ignored by the IOMMU.

8 G: Global Page. For 1-Gbyte page PDPE this bit is ignored by the IOMMU.

MBZ. For 1-Gbyte page PML5E and PML4E this bit must be zero.

7 1b. For 1-Gbyte page PDPE this bit must be 1b.

MBZ: Must be zero. For 1-Gbyte page PML5E and PML4E this bit must be zero.

6 D: Dirty. For 1-Gbyte page PDPE, this bit is only present in the lowest level of the page-translation
hierarchy. This bit indicates whether the page-translation table or the physical page to which this
entry points has been written to by a peripheral. The D bit is set to 1 by the IOMMU the first time the
a peripheral writes to the physical page. The D bit is never cleared by the IOMMU. See Section 2.2.7
[Guest and Nested Address Translation].

IGN: Ignored. For 1-Gbyte page PML5E and PML4E, this bit is ignored by the IOMMU.

[AMD Public Use]

112 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.2.6.8 Nested Page Table Walks
A guest translation can require many page table entries to complete. Careful IOMMU cache design
can significantly reduce the penalty of page table walks.

5 A: Accessed. IOMMU uses same meaning as AMD64 processor. This bit indicates whether the page-
translation table or the physical page to which this entry points has been accessed by an IOMMU or
processor. The A bit is set to 1 by the IOMMU the first time the table or physical page is either read
from or written to. The A bit is never cleared by the IOMMU. See Section 2.2.7 [Guest and Nested
Address Translation].

4 PCD: Page-level Cache Disable. Ignored by the IOMMU.

3 PWT: Page-level Writethrough. Ignored by the IOMMU.

2 U/S: User/Supervisor. IOMMU uses same meaning as AMD64 processor. 0 = access is restricted to
supervisor level. 1 = both user and supervisor access is allowed.
Software Note: For a peripheral not using U/S, software should set the bit to select supervisor mode.
If MMIO Offset 0030h[USSup] = 0, this field is ignored.

1 R/W: Read/Write. This bit controls read/write access to all physical pages mapped by the table entry.
0=access is read-only. 1=access is either read or write. Actual permissions applied to a given page
are cumulatively ORed during the page-table walk. The IOMMU converts this status to separate
read- and write-enable bits where required.

0 P: Present. Present bit indicates whether the page-translation table or guest physical page is loaded in
physical memory. 0=page is not present. 1=page is present. When P=0, all the remaining bits in this
data structure entry are available to software and are not examined by the IOMMU. Entries with P=0
are never cached in an IOMMU TLB nor will the IOMMU set the Accessed or Dirty bit for the table
entry.

Table 31: IOMMU Interpretation of AMD64 Long Mode 1-Gbyte Page Table Fields (Continued)

Bits Description from AMD64 processor specification

[AMD Public Use]

Architecture 113

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 40: Complete GVA-to-SPA Address Translation

The notation in Figure 40 is adapted from the AMD64 processor architecture specification and uses
the notation for processor nested paging. A GVA is shown at the top-left of the figure. The circles
indicate GPA translation entries that use the host page table root pointer in the DTE (“DTE base
pointer” in the figure). The square entries are GPA entries that are obtained using the guest translation
tables pointed to from the GCR3 Table. The figure shows an example of the nested paging translation
process when using AMD64 4K Guest and Host page tables. The square entries on the right edge of
the figure correspond to Figure 27, Figure 28, Figure 29, and Figure 30. The number of rows corre-
sponds to the number of levels in the guest page table and is smaller when large pages are used. The
number of circles on each row may vary depending on the size of the host pages and whether level
skipping is used. In the ideal case, an IOMMU TLB cache entry is found containing the required SPA
and the translation is complete.

If there is no TLB cache hit, the IOMMU must perform a complete page table walk. The GVA must
be processed through four layers of guest address translations in the guest physical address space; this
is illustrated down the diagram. Each GPA must be translated into the system physical address space

nL4 nL3 nL2 nL1 GL5

1 2 3 4 5

GVA[56:48]

nL4 nL3 nL2 nL1 GL4

6 7 8 9 10

GVA[47:39]

nL4 nL3 nL2 nL1 GL3

11 12 13 14 15

GVA[29:21]
nL4 nL3 nL2 nL1 GL2

16 17 18 19 20

GVA[20:12]
nL4 nL3 nL2 nL1 GL1

21 22 23 24 25

nL4 nL3 nL2 nL1

26 27 28 29

SPA
TLB

Entry
Value

nL4 nL3 nL2 nL1 G

GL5

GL4

GL3

GL2

GL1

GPA

GCR3 Pointer Nested Page Table

G
u

e
st P

age
 Tab

le

GVA[20:12]

GVA[38:30]

DTE base
pointer

GVA

GPA SPA SPA SPA SPA

[AMD Public Use]

114 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

to obtain a series of intermediate translation records, illustrated across the diagram.

2.2.7 Guest and Nested Address Translation

The IOMMU supports host nested address translation and optionally supports guest address transla-
tion.

2.2.7.1 Combining Guest and Host Address Translation

The guest and nested (host) translation can be operated in four basic combinations: disabled, together,
and each independently. Interrupt remapping is controlled separately by programming DTE[IV].

1. IOMMU address translation is turned off by programming DTE[V]. When DTE[V]=0, no address
translation or access checking is performed by the IOMMU for upstream operations from the
device. Peripherals have full access to the entire system physical address space. ATS and PRI
requests fail.

2. The IOMMU provides GPA-to-SPA address translation by programming DTE[V]=1 and
DTE[GV]=0. This operational configuration offers address translation with features such as skip-
level tables, large pages (e.g., 8 Kbytes, 16 Kbytes, etc.), and access control. ATS and PRI
requests can be enabled.

The next two combinations require that guest address translation is supported by and enabled for the
IOMMU (see MMIO Offset 0030h[GTSup] and MMIO Offset 0018h[GTEn]).

3. The IOMMU provides GVA-to-GPA (where GPA = SPA) address translation when software pro-
grams DTE[V]=1 and DTE[GV]=1 and DTE[Mode]=0, with DTE[IR] and DTE[IW] as desired.
This configuration enables the nested translation in pass-through mode with guest translation
active. ATS and PRI requests can be enabled.

4. The IOMMU provides GVA-to-SPA translation similar to the nested paging provided by the pro-
cessor. Software programs DTE[V]=1 and DTE[GV]=1 and the associated translation tables.
Accesses are translated using the guest tables for GVA-to-GPA and the underlying nested tables
for GPA-to-SPA. ATS and PRI can be enabled.

2.2.7.2 Calculating Page Table and Page Access Attributes

When guest translation is not supported, the IOMMU calculates read and write attributes as described
in Section 2.2.3 [I/O Page Tables for Host Translations].

When guest translation is supported, the IOMMU calculates guest access attributes and nested access
attributes for read, write, executable, and user/supervisor permission, and for present, page-accessed,
and page-dirty attributes. Note that the updating of control bits in the page tables is visible to the CPU
when the IOMMU is sharing guest page tables.

• Read permission - Read permission for a page is first calculated per the method specified by the
AMD64 architecture using the guest page tables. Read permissions must also be enabled in the
nested page tables used to look up the SPA. Finally, the IR bit in the DTE must be set to enable
read permission for the page.

[AMD Public Use]

Architecture 115

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

• Write permission - Write permission for a page is determined in a similar manner. First the write
permission is calculated using the permission bits in the guest and nested page tables and then
combined with the IW bit in the DTE.

• Executable (NX) permission - See sections 2.2.6.1 and 2.2.6.2 for information on calculating
executable permissions for a page. The executable permission is ignored when a peripheral
supplies a GPA or SPA (i.e., when guest address translation is not used).

• User/supervisor (U/S) permission - When permission checking is supported (EFR[USSup] = 1)
and global privileged access abort is disabled (PrivAbrtEn = 00b), access permission is calculated
as a cumulative-AND of the U/S permission bits in the guest page descriptors. The U/S
permission is ignored when a peripheral supplies a GPA or SPA (i.e., when guest address
translation is not used).

• Page accessed (A) attribute - The Accessed attribute is not cumulative. The Accessed attribute bit
applies to the page containing the next level of the translation table (PML4E[A] bit refers to the
PDPE page, etc.). The Accessed bit in the PTE refers to the data page.

• Present (P) attribute - The Present attribute bit applies to the page containing the next level of the
translation table (PML4E[P] bit refers to the PDPE page, etc.). The Present bit in the AMD64
PTE refers to the data page. The page-table walk terminates when the first non-present page is
discovered.

Implementation Note: As an optimization, a page table walk may be terminated early as long as the
end state is not compromised. For example, a write operation to a memory location may be termi-
nated (IO_PAGE_FAULT) at the first descriptor found for a read-only region.

2.2.7.3 Recalculating Read and Write Access Permissions

The IOMMU calculates read and write access status from cached or in-memory information; if the
result is access-denied using cached information, the IOMMU recalculates read and write access sta-
tus from in-memory information when guest address translation is used by the peripheral.

When guest translation is active (see MMIO Offset 0018h[GTEn]), the IOMMU follows the
AMD64 long mode address translation requirements for guest virtual addresses and so software is not
required to issue an invalidation command when it promotes guest access privileges or marks a not-
present guest page as present. An ATS request or memory reference that results in insufficient guest
privileges drawn from a TLB entry may be based on stale information. When the IOMMU detects an
access violation using cached guest translation information, it must rewalk the guest page tables to
recompute access permission using fresh information read from memory, in the process replacing or
discarding cached information. The nested page tables may be read as a consequence of the guest
table rewalk. If the retrieved information contains permission control settings that disallow the access
then the IOMMU blocks the access; else the IOMMU allows the requested access. An ATS transla-
tion request calculates access privileges the same way and returns the computed result. The rewalk
may require a full walk of both guest and nested translations (see Section 2.2.7 [Guest and Nested
Address Translation]).

Software Note: For a peripheral using ATS, software must determine the invalidation requirements
and issue appropriate IOTLB invalidation commands.

Software Note: Software is required to issue an invalidation command when it demotes guest access

[AMD Public Use]

116 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

privileges or removes the guest page (“present to not-present”).

The AMD64 long mode page tables contain information about memory types (PAT) and the IOMMU
ignores these bits when it is outside the coherence domain.

2.2.7.4 Updating Accessed and Dirty Bits in the Guest Address Tables

When Guest translation is supported, the IOMMU updates A and D bits in guest page descriptors
when guest address translation is used by the peripheral transaction. When the IOMMU updates A
and D bits in the guest page descriptors, it uses interlocked operations compatible with the processor
update operations. When A and D bits in host page tables are supported [Section 2.2.3.1 and Section
2.2.3.2] the IOMMU hardware also updates the host page descriptors in manner similar to one
described below. Note that the setting of accessed and dirty status bits in the page tables is visible to
both the CPU and the peripheral when sharing guest page tables. The IOMMU interlocked operations
to update A and D bits must be 64-bit operations and naturally aligned on a 64-bit boundary.

When the IOMMU fetches each needed page table entry, it processes the descriptor differently for
memory access requests and for translation requests. For a memory access request, the IOMMU pro-
cesses the descriptor as follows:
1. Decodes the read and write intent from the memory access.
2. If P=0 in the page descriptor, fail the access.
3. Compare the A & D bits in the descriptor with the read and write intent in the request.
4. If the A or D bits need to be updated in the descriptor:

• Start atomic operation.
• Read the descriptor as a 64-bit access.
• If the descriptor no longer appears to require an update, release the atomic lock with no further

action and continue to step 5.
• Calculate the new A & D bits.
• Write the descriptor as a 64-bit access.
• End atomic operation.

5. Continue to the next stage of translation or to the memory access.

For a translation request, the IOMMU processes the descriptor as follows:
1. Decode the read and write intent from the ATS request, including the ATS 1.1 NW bit.
2. If P=0 in the descriptor, return an ATS response with no access (R=W=0).
3. Check the A & D bits in the descriptor against the read and write intent in the translation request.
4. If the descriptor is obtained from the TLB (P=1) and permissions are not adequate to meet the

request, discard the TLB entry, rewalk the page table, and re-evaluate the request.
5. If the descriptor has been obtained from a page-table walk, return the indicated permissions.
6. If the A or D bits need to be updated in the descriptor:

• Start atomic operation.
• Read the descriptor as a 64-bit access.
• If the descriptor no longer appears to require an update, release the lock with no further action

and continue to step 7.

[AMD Public Use]

Architecture 117

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

• Update the A & D bits.
• Write the descriptor as a 64-bit access.
• End atomic operation.

7. Continue to the next stage of translation or return the translation result.

2.2.7.5 Clearing Accessed and Dirty Bits

To clear the Accessed bit in a descriptor, software must modify the page table structure in memory
and then invalidate the affected address range in the IOMMU for all devices using the translation
table.

To clear the Dirty bit in an AMD64 descriptor, software must mark the PTE in memory as not-present
(PR=0) and invalidate the affected address range in the IOMMU for all devices using the translation
table. When the invalidation is complete, the Dirty bit may be examined or changed. In general, the
Dirty bit is expected to be used to determine whether a page needs to be written to disk as part of a
page-out operation.

2.2.7.6 Calculating PCIe® Read and Write Attributes for an ATS Response
When translating addresses, the IOMMU must convert between page table semantics and PCIe
semantics using Table 32.

The page table contains a present bit (P) and a read/write bit (R/W), the ATS request includes a no-
write hint, and the ATS response requires separate read (R) and write (W) permission bits. A key
requirement is that the IOMMU provide an ATS response consistent with page table semantics for
privilege promotions. In general, the IOMMU should return results based on the values found in the
TLB. The special case for an ATS request are for pages for which the system software may have ele-
vated the access permissions without issuing an invalidation command to the IOMMU. The system
software is required to issue an invalidation command when it reduces access permissions (including
marking the page not-present with P=0). Specifically, software must invalidate after removing write

Table 32: AMD64 Access Privilege Conversion Table for ATS Request

PTE ATS Request:
NW

IOMMU Action
ATS Response

P RW R W

0 X X Issue ATS response. 0 0

1 0 0 If TLB hit, rewalk and reevaluate using
in-memory page table entry.

– –

If TLB miss, walk page table, set A, and
issue ATS response.

1 0

1 0 1 Set A and issue ATS response. 1 0

1 1 0 Set A & D and issue ATS response. 1 1

1 1 1 Set A and issue ATS response. 1 0

[AMD Public Use]

118 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

or execute permission, after changing P from present to not-present, or after changing U/S from user
to supervisor.

2.2.7.7 PCIe® TLP PASID Prefix

The PCI-SIG defines a method to add information to a transaction called the TLP prefix. A PCI-SIG
ECN uses the TLP prefix to carry added information for a transaction that bears a GVA; this is called
the PASID TLP prefix. The IOMMU inspects the first TLP prefix for a PASID TLP prefix when there
are multiple and passes through any remaining TLP prefixes (excluding the first if it is a PASID TLP
prefix and including the first if it is not a PASID TLP prefix). The IOMMU processes memory trans-
actions with a valid PASID TLP prefix; a PASID TLP prefix used with other types of cycles (e.g.,
configuration cycles, interrupts) may be ignored by the IOMMU. The IOMMU behavior is undefined
when it receives a PASID TLP prefix in a downstream direction.When a PCIe transaction has a
PASID TLP prefix containing PNP=0b (see Figure 41 and Table 33) and an untranslated address, the
transaction is said to contain a valid PASID.

The IOMMU processes the PASID TLP prefix when enabled and MMIO Offset 0018h[GTEn]=1b
and MMIO Offset 0030h[GTSup]=1b. An upstream packet with a valid PASID in the PASID TLP
prefix contains a canonical GVA; an upstream packet without a valid PASID in the PASID TLP prefix
or with no PASID TLP prefix and an untranslated address contains a GPA. When the PASID TLP pre-
fix contains a valid PASID, the IOMMU processes the packet using the PMR and Exe bits and the
guest translation tables. When the PASID TLP prefix does not contain a valid PASID (PNP=1b), the
IOMMU ignores the PASID, PMR, and Exe fields.

The PASID TLP prefix contains a 24-bit payload that is interpreted by the IOMMU in the following
way, as specified by the PCI-SIG PCIe ECR for “Process Address Space Identifier Prefix”:

Figure 41: PCIe® TLP PASID Prefix Payload Format

When a PCIe transaction contains a valid PASID, the packet contains a GVA. A DeviceID value, con-
sisting of BusID, Device and FunctionID values (BDF) is used to select GPA-to-SPA translation
tables and the PASID TLP prefix contains Exe, PMR, PNP, and PASID information. The PASID is

23 22 21 20 19 0

PM
R

E
xe

PN
P

R
es PASID[19:0]

Table 33: PCIe® TLP Prefix Payload Fields

Bits Description

23 PMR: Privileged Mode Requested. 0=non-privileged (user) request. 1=privileged (supervisor)
request.

22 Exe: execute requested. 0=no execute permission requested. 1=execute permission requested.

21 PNP: PASID Not Present. 0=PASID field contains the PASID to use for the transaction. 1=PASID
field is not valid.

20 Reserved.
Note: Although this bit is reserved, it is passed through the IOMMU as received from the peripheral.

19:0 PASID[19:0]: Guest process address space ID.

[AMD Public Use]

Architecture 119

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

used to select the GVA-to-GPA translation tables. When enabled (see MMIO Offset 0030h[GTSup]
and MMIO Offset 0018h[GTEn]), the IOMMU processes the PASID TLP prefix on memory-access
PCIe packets, PCIe ATS packets, and PCIe PRI packets. The IOMMU does not process the PASID
TLP prefix on an MSI-X or MSI interrupt packet. If an I/O device supplies a PASID TLP prefix that
the IOMMU does not process, the IOMMU reports an error in the event log (see Section 2.5.9
[INVALID_DEVICE_REQUEST Event]). When a PCIe memory transaction contains no valid
PASID, the packet contains a GPA and the DeviceID is used to select GPA-to-SPA translation tables.

When the IOMMU receives a TLP prefix with Fmt=001b and Type=100b, it is processed as a PASID
TLP prefix and the TLP prefix payload is interpreted to extract the fields in Table 33. If the TLP Pre-
fix Type !=100b, the IOMMU handles the TLP prefix as defined in the PCI-SIG PCIe specifications.
Although the PCI-SIG TLP specification allows for multiple TLP prefixes on a single packet, the
IOMMU interprets only the first TLP prefix to determine if the transaction contains a PASID. The
IOMMU behavior in response to a PASID TLP prefix other than the first prefix is not defined.

2.2.7.8 Maximum PASID value (PASmax)

The maximum PASID value supported by a given IOMMU implementation can be calculated using
the value read from the PASmax field of the EFR (see MMIO Offset 0030h[PASmax]). The maxi-
mum PASID value supported is equal to (2PASmax−1). Each peripheral may support a smaller value.
System software is required to program the guest CR3 tables so that PASID values out-of-range for
the peripheral or for the IOMMU are marked not-valid (see Table 20 and Table 25).

2.2.7.9 Calculating Non-Snoop Accesses Attribute for an ATS Response

In an ATS response, the N field controls whether a device may set the NoSnoop attribute in a DMA
response based upon the returned translation. If N=1, the device may only generate DMA with
NoSnoop=0. If N=0, the device may use proprietary means to determine how to set NoSnoop.

For ATS responses containing only host translations, the DTE[FC] attribute is used to control the N
field.

For ATS responses containing guest translations, if IOMMU Offset 0030h[AttrFWSup]=0, the N field
is always set to 1. If IOMMU Offset 0030h[AttrFWSup]=1, the value of the N field is determined by
the values of DTE[AttrV], DTE[SnoopAttribute] and DTE[Mode0FC]. See Section 2.2.2.1 Device
Table Entry.

2.2.7.10 Extended Coherency Attributes

If MMIO Offset 0030h[AttrFWSup] = 1, the IOMMU supports returning additional coherency infor-
mation beyond the N field in response to an ATS request. The nature of the coherency information,
the mechanisms used to communicate this information and the methods to determine whether an I/O
device support receiving this information are outside the scope of this specification.

2.2.8 Guest Virtual APIC Table for Interrupt Virtualization

If the Guest Virtual APIC feature is supported, the IOMMU provides the Guest Virtual APIC Table
which is used to virtualize interrupts. When enabled, the IOMMU can cause interrupts to be delivered
directly to running guests without hypervisor intervention for a device. When interrupt remapping
and interrupt virtualization are both enabled, an incoming device interrupt is first virtualized using the

[AMD Public Use]

120 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

IRTE and then delivered using the AMD virtual interrupt controller. Interrupt virtualization requires
compatible support in the IOMMU and the processor.

When MMIO Offset 0030h[GASup]=0, the IOMMU does not support interrupt virtualization using
the Guest Virtual APIC Table.

When MMIO Offset 0030h[GASup]=1, device interrupt virtualization is enabled for the IOMMU by
programming MMIO Offset 0018h[GAEn]=1, IRTE[GuestMode]=1 to activate interrupt virtualiza-
tion for the device interrupt, and the Guest Virtual APIC Table Root Pointer in the IRTE to the base
address (SPA) of the guest virtual APIC backing page. Further information can be found in Chapter
15 of APM2 (Advanced Virtual Interrupt Controller).

2.2.9 Guest I/O Protection

If the IOMMU supports Guest I/O Protection (see MMIO Offset 0030h[GIoSup]), I/O devices that do
not support PASID may be used in conjunction with guest address translation. This feature is enabled
by setting DTE[GIoV]=1. When enabled, a default PASID of 0 is applied to all non-PASID DMA
requests from the enabled peripheral. All features related to guest and nested translation are then
applied. Received DMA requests without PASID in the 0xFEEx_xxxx address range are treated as
MSI interrupts and are processed using interrupt remapping rather than address translation.

The guest I/O protection feature may be used in conjunction with peripherals that issue a mix of
DMA requests with and without PASID. Requests without a PASID will be modified to use the
default PASID of 0. When issuing requests with PASID, the peripheral must be configured to use a
non-zero PASID.

Multiple gCR3 table entries may be programmed to reference the same guest page table. This allows
a peripheral to share a guest address space between its requests using the default PASID and requests
using a non-zero PASID.

Operating systems are encouraged to use this feature to construct I/O protection buffers using the
guest page table format.

IOMMU hardware that supports the Guest I/O Protection feature is capable of walking the nested
page tables formed when the OS is virtualized by a Hypervisor. This is not possible if the OS uses the
host page table format for I/O protection.

2.3 Starting the IOMMU
Before attempting to access memory-mapped registers, software must allocate a contiguous physical
memory range for the registers and program the base address using IOMMU Base Address Low Reg-
ister [Capability Offset 04h] and IOMMU Base Address High Register [Capability Offset 08h]. If
MMIO Offset 0030h[PCSup] = 0, 16 Kbytes of space must be allocated. If MMIO Offset
0030h[PCSup] = 1, 512 Kbytes of space must be allocated.

2.3.1 Data Structure Initialization

To start the IOMMU and activate table walking, etc., use the following procedure after a system reset.

• System firmware must program any implementation-defined registers to prepare for software use
of the guest virtual APIC.

[AMD Public Use]

Architecture 121

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

• If not previously set, initialize the SMI filter registers (see Section 2.1.5 [System Management
Interrupt (SMI) Controls]).

• If not previously set, initialize the following registers:
• the Device Table Base Address Register [MMIO Offset 0000h],
• the Command Buffer Base Address Register [MMIO Offset 0008h],
• the Command Buffer Head Pointer Register [MMIO Offset 2000h],
• the Command Buffer Tail Pointer Register [MMIO Offset 2008h],
• the IOMMU Exclusion Base Register / Completion Store Base Register [MMIO Offset

0020h] and the IOMMU Exclusion Range Limit Register / Completion Store Limit Register
[MMIO Offset 0028h], if used,

• the Event Log Base Address Register [MMIO Offset 0010h], the Event Log Head Pointer
Register [MMIO Offset 2010h] and the Event Log Tail Pointer Register [MMIO Offset
2018h], if used.

• Write the IOMMU Control Register [MMIO Offset 0018h] with EventLogEn=1b (if used),
CmdBufEn=1b, and IommuEn=1b. Other IOMMU Control Register [MMIO Offset 0018h] bits
should be set as necessary.

• If using peripheral page requests, software must initialize the PPR Log registers in addition to the
other registers before setting IommuEn=1b:
• PPR Log Base Address Register [MMIO Offset 0038h],
• IOMMU PPR Log Head Pointer Register [MMIO Offset 2030h], and
• IOMMU PPR Log Tail Pointer Register [MMIO Offset 2038h].

• Software must write the IOMMU Control Register [MMIO Offset 0018h] with PPREn = 1b,
PPRLogEn = 1b; and, if using interrupts, PprIntEn = 1b.

• Enable virtual interrupt request logging.
• Software should not access the IOMMU Reserved Register [MMIO Offset 1FF8h].

The IOMMU is now operational; it processes device transactions and fetches command buffer
entries. When enabled, the IOMMU creates event log entries as events occur.

2.3.2 Making Guest Interrupt Virtualization Changes

Software may change the guest interrupt virtualization information in the IRTE in the following man-
ner, according to the value of RemapEn before the change in the relevant IRTE.

• If RemapEn=0 before the change, changes can be made in any order as long as the last change is
to set RemapEn=1.

• If RemapEn=1 before the change, the following steps may be followed to change interrupt
virtualization information:
• Atomically update the IRTE.
• If any cacheable fields of the IRTE were modified, invalidate the interrupt remapping table.

See Section 2.2.5.2 [Interrupt Virtualization Tables with Guest Virtual APIC Enabled] and
Section 2.4.5 [INVALIDATE_INTERRUPT_TABLE].

[AMD Public Use]

122 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.4 Commands
The host software controls the IOMMU through a shared circular buffer in system memory. The host
software writes commands into the buffer and then notifies the IOMMU of their presence by writing a
new value to the tail pointer. The IOMMU then reads the commands and executes them at its own
pace. The shared command buffer organization was chosen to allow the host software to send com-
mands in batches to the IOMMU, while allowing the IOMMU to set the pace at which commands are
actually executed.

Figure 42: Command Buffer in System Memory

The Command Buffer Base Address Register [MMIO Offset 0008h] is used to program the system
physical base address and size of the command buffer. The command buffer occupies contiguous
physical memory starting at the programmed base address, up to the programmed size. The size of the
command buffer must be a multiple of 4 Kbytes (to facilitate “modulo N” indexing for circularity)
and can be as large as 32768 entries (corresponding to a 512-Kbyte buffer). The address of the com-
mand buffer must be aligned to a multiple of 4 Kbytes.

In addition to the Command Buffer Base Address Register [MMIO Offset 0008h], the IOMMU main-
tains two other registers associated with the command buffer: the Command Buffer Head Pointer
Register [MMIO Offset 2000h], an offset from the base address, which points to the next command
that the IOMMU can fetch, and the Command Buffer Tail Pointer Register [MMIO Offset 2008h], an
offset from the base address, which points to the next command to be written by software. These reg-
isters are located in IOMMU MMIO space. When the Command Buffer Base Address Register
[MMIO Offset 0008h] register is written, the Command Buffer Head Pointer Register [MMIO Offset
2000h] and the Command Buffer Tail Pointer Register [MMIO Offset 2008h] are reset to the 0. When
the Command Buffer Head Pointer Register [MMIO Offset 2000h] and the Command Buffer Tail
Pointer Register [MMIO Offset 2008h] are equal the command buffer is empty. The Command Buf-
fer Head Pointer Register [MMIO Offset 2000h] is incremented by the IOMMU after reading a com-
mand from the command buffer.

The IOMMU fetches commands in FIFO order from the command buffer. The IOMMU must never
refetch a command. The IOMMU must set the Coherent bit in the HyperTransport™ packet when

circular buffer of 128-bit commands (in system memory)

+112

+96

+80

+64

+48

+32

+16

+0

IOMMU
(consumes commands)

system software
(produces commands)

tail pointer

write
s

head pointer

IOMMU registerssuggested variables

buffer address

buffer size

buffer address

buffer size reads

tail pointer

[AMD Public Use]

Architecture 123

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

issuing command buffer read requests. Although the IOMMU fetches commands in order, it may exe-
cute them concurrently. Software may use the COMPLETION_WAIT command when synchroniza-
tion is required.

All commands read by the IOMMU take the form of a 4-bit opcode together with two operands,
which may be respectively 60 and 64 bits long, for a total of 128 bits (16 bytes) per command:

Figure 43: Generic Command Buffer Entry Format

The COMMAND_HARDWARE_ERROR (Section 2.5.7 [COMMAND_HARDWARE_ERROR
Event]) and ILLEGAL_COMMAND_ERROR (Section 2.5.6 [ILLEGAL_COMMAND_ERROR
Event]) events cause the IOMMU to halt command processing. If a command buffer entry causes one
of these errors, the command head pointer does not advance. Note that the head pointer may have
advanced past the command in error. Other activities of the IOMMU, including translations, error
logging, and table walks, continue to be processed. Software is required to examine the IOMMU sta-
tus and event log information to resolve the situation. Command processing is restarted by using the
CmdBufEn control bit in the IOMMU Control Register [MMIO Offset 0018h] and status may be
determined from CmdBufRun in IOMMU Status Register [MMIO Offset 2020h].

To restart the IOMMU command processing after the IOMMU halts it, use the following procedure.
• Wait until CmdBufRun=0b in the IOMMU Status Register [MMIO Offset 2020h] so that all

commands complete processing as the circumstances allow. CmdBufRun must be 0b to modify
the command buffer registers properly.

• Set CmdBufEn=0b in the IOMMU Control Register [MMIO Offset 0018h].
• As necessary, change the following registers (e.g., to relocate the command buffer):

• the Command Buffer Base Address Register [MMIO Offset 0008h],
• the Command Buffer Head Pointer Register [MMIO Offset 2000h], and
• the Command Buffer Tail Pointer Register [MMIO Offset 2008h].

• Any or all command buffer entries may be copied from the old command buffer to the new and
software must set the head and tail pointers appropriately.

• Write the IOMMU Control Register [MMIO Offset 0018h] with CmdBufEn=1b and
ComWaitIntEn as desired.

The IOMMU now processes command buffer entries.

2.4.1 COMPLETION_WAIT

The COMPLETION_WAIT command allows software to serialize itself with IOMMU command
processing. The COMPLETION_WAIT command does not finish until all older commands issued
since a prior COMPLETION_WAIT have completely executed.

31 28 27 0

First opcode dependent operand [31:0] +00

Opcode[3:0] First opcode dependent operand [59:32] +04

Second opcode dependent operand [31:0] +08

Second opcode dependent operand [63:32] +12

[AMD Public Use]

124 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Implementation Note: The COMPLETION_WAIT command may wait to finish after all older com-
mands complete, including prior COMPLETION_WAIT commands. If there are no prior COMPLE-
TION_WAIT commands in the command buffer, the COMPLETION_WAIT command finishes after all
older commands. See important considerations in Section 2.4.11 [IOMMU Ordering Rules].

For example, system software should use the following procedure to reclaim pages formerly made
available to devices:
• Mark the page table entry (or entries) not present in the IOMMU's tables.
• Issue appropriate page invalidate commands to the IOMMU.
• Issue a COMPLETION_WAIT command to the IOMMU. When the COMPLETION_WAIT has

finished, the IOMMU is designed to ensure that there are no transactions in flight anywhere in the
system fabric that read or write the invalidated pages.

Both s = 1 and i = 1 may be specified in the same COMPLETION_WAIT command.

Figure 44: COMPLETION_WAIT Command Format

31 28 27 20 19 3 2 1 0

Store Address [31:3] f i s +00

01h Reserved Store Address [51:32] +04

Store Data [31:0] +08

Store Data [63:32] +12

Table 34: COMPLETION_WAIT Fields

Bits Description

31:3
+00

Store Address[31:3]. The lower portion of the SPA into which the IOMMU may store the Store
Data.

2
+00

f: flush queue. 0=all previous commands until COMPLETION_WAIT have finished, but IOMMU
is allowed to start execution of subsequent independent commands. 1=command queue is strictly
executed in order, subsequent commands are not launched and executed until
COMPLETION_WAIT finishes.

1
+00

i: completion interrupt. 0=the IOMMU does not set MMIO Offset 2020h[ComWaitInt]. 1=the
IOMMU sets MMIO Offset 2020h[ComWaitInt]. See Capability Offset 10h[MsiNum].

0
+00

s: completion store. 0=the IOMMU does not write the Store Data value to the Store Address. 1=the
IOMMU writes the specified 64-bit Store Data value to the Store Address. Software can use this
write to update a semaphore indicating to the waiting process that it can continue execution. The
address written by the COMPLETION_WAIT must be located in system memory.
Implementation Note: The write operation must be coherent and not in the isochronous channel.
Hardware must not set the PassPw bit when performing this write.

31:28
+04

01h. COMPLETION_WAIT command number.

27:20
+04

Reserved.

[AMD Public Use]

Architecture 125

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.4.2 INVALIDATE_DEVTAB_ENTRY

When system software changes a Device Table entry, it must instruct the IOMMU to invalidate that
DeviceID from its internal caches. The IOMMU is then forced to reload the Device Table entry
before DMA from the device is allowed. The IOMMU may reload the Device Table entry any time
after the invalidation has completed.

When software invalidates a DeviceID corresponding to an IOMMU-aware device with its own
IOTLB, it should immediately follow INVALIDATE_DEVTAB_ENTRY with an INVALI-
DATE_IOTLB_PAGES targeted at the same DeviceID and sized to invalidate the full 64-bit address
space for the given DeviceID. For a multi-function device this only invalidates the IOTLB entries for
the specified function.

This command does not invalidate translation cache entries. When removing a device from a domain,
software must issue INVALIDATE_IOMMU_PAGES for the associated DomainID.

Note: Previous versions of the IOMMU specification indicated that INVALIDATE_IOMMU_PAGES
was not required after changing a Device Table Entry if there were other devices sharing the
DomainID.

Figure 45: INVALIDATE_DEVTAB_ENTRY Command Format

19:0
+04

Store Address[51:32]. The lower portion of the SPA into which the IOMMU may store the Store
Data.

31:0
+08

Store Data[31:0]. The lower portion of the Store Data.

31:0
+12

Store Data[63:32]. The upper portion of the Store Data.

31 28 27 16 15 0

Reserved DeviceID[15:0] +00

02h Reserved +04

Reserved +08

Reserved +12

Table 34: COMPLETION_WAIT Fields (Continued)

Bits Description

[AMD Public Use]

126 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.4.3 INVALIDATE_IOMMU_PAGES

The INVALIDATE_IOMMU_PAGES command instructs the IOMMU to invalidate a range of
entries in its translation cache for the specified DomainID. The size of the invalidate command is
determined by the S bit and the address. The INVALIDATE_IOMMU_PAGES command must
appear as a single atomic operation to the translation engine.

Software Note: When issuing INVALIDATE_IOMMU_PAGES commands, the size of each invalidate
must be greater than or equal to the size of the largest page being invalidated.

Implementation Note: IOMMU implementations are not required to provide optimal support for all
of the possible invalidation request sizes. The IOMMU is free to invalidate more than just exactly the
requested range of addresses, up to and including its entire translation cache if necessary.

Implementation Note: When a guest physical address translation is invalidated, the guest virtual
address translations that depend on it must also be invalidated. The IOMMU is permitted to invali-
date all guest virtual translations for the DomainID when a guest physical address translation is
invalidated.

Software Note: To invalidate the guest translation information for a single process address space,
issue an INVALIDATE_IOMMU_PAGES command with GN=1, PASID and DomainID as needed,
PDE=1, S=1, and Address[63:12]=7_FFFF_FFFF_FFFFh. The IOMMU invalidates all translation
information associated with the DomainID for both nested and guest levels when S=1, PDE=1,
GN=0, and Address[63:12]=7_FFFF_FFFF_FFFFh.

Software Note: When the IOMMU is configured to update Accessed and Dirty bits, software must
issue invalidation commands when it resets A or D from 1 to 0.

Table 35: INVALIDATE_DEV_TAB_ENTRY Fields

Bits Description

31:16
+00

Reserved.

15:0
+00

DeviceID[15:0].

31:28
+04

02h. INVALIDATE_DEV_TAB_ENTRY command number.

27:20
+04

Reserved.

31:0
+08

Reserved.

31:0
+12

Reserved.

[AMD Public Use]

Architecture 127

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 46: INVALIDATE_IOMMU_PAGES Command Format

31 28 27 20 19 16 15 12 11 3 2 1 0

Reserved PASID[19:0] +00

03h Reserved DomainID[15:0] +04

Address [31:12] Reserved GN

P
D

E

S +08

Address [63:32] +12

Table 36: INVALIDATE_IOMMU_PAGES Fields

Bits Description

31:20
+00

Reserved.

19:0
+00

PASID[19:0]. Must be zero when two-level translation is not enabled (see DTE[GV] in Table 7);
ignored when GN=0.

31:28
+04

03h. INVALIDATE_IOMMU_PAGES command number.

27:16
+04

Reserved.

15:0
+04

DomainID[15:0].

31:12
+08

Address[31:12]. Address to invalidate.

11:3
+08

Reserved.

2
+08

GN: guest/nested. 0 = Address[52:12] is a GPA so matching nested translations are invalidated and
all guest translations within the domain must be invalidated if guest address translation is active for
any DeviceID within the domain. 1=Address[52:12] is a GVA and matching guest translations are
invalidated for the specified PASID. No nested translations are invalidated.
Note: When two-level translation is not supported or not enabled, GN must be zero (see DTE[GV] in
Table 7).
Implementation Note: Previous versions of this specification indicated that only 'dependent' guest
translations needed to be invalidated with GN=0. All known implementations of IOMMU that
support guest translation invalidate all guest translations within the specified domain when GN=0.

1
+08

PDE: page directory entries. 0: only the cached page translation entries are flushed. 1: the cached
page directory and page translation entries are flushed. If the range of the
INVALIDATE_IOMMU_PAGES command covers all of the pages in a page directory entry and
PDE = 1, the IOMMU must invalidate the page directory entry in the page directory cache. When
GN = 1, the guest translation PDEs and PTE must be invalidated and the nested/host PDE is ignored.

[AMD Public Use]

128 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.4.4 INVALIDATE_IOTLB_PAGES

The INVALIDATE_IOTLB_PAGES command is only present in IOMMU implementations that sup-
port remote IOTLB caching of translations (see Capability Offset 00h[IotlbSup]). This command
instructs the specified device to invalidate the given range of addresses in its IOTLB. The size of the
invalidate command is determined by the S bit and the address.

When guest translation is supported, the INVALIDATE_IOTLB_PAGES command optionally sup-
ports PASID and software may program GN = 1 (see MMIO Offset 0030h[GTSup]) to specify that
Address is a GVA to be translated using PASID.

Software Note: The IOMMU does not check the value of DTE[I] before sending the invalidation com-
mand to the peripheral.

For more information on the Maxpend and QueueID fields, refer to the PCI Address Translation Ser-
vices 1.1 Specification or newer and the peripheral documentation.

Figure 47: INVALIDATE_IOTLB_PAGES Command Format

0
+08

S: size. 0=the size of the invalidation is 4 Kbytes. 1=the size of the invalidation is determined by the
first zero bit in the address starting from Address[12] (see encoding in Table 14).

31:0
+12

Address[63:32]. Address to invalidate.

31 28 27 24 23 16 15 12 11 6 5 4 3 2 1 0

Maxpend [7:0] PASID[15:8] DeviceID[15:0] +00

04h PASID[19:16] PASID[7:0] QueueID[15:0] +04

Address [31:12] Reserved Type
R

es
v

GN

R
es

v

S +08

Address [63:32] +12

Table 37: INVALIDATE_IOTLB_PAGES Fields

Bits Description

31:24
+00

Maxpend[7:0]. The Maxpend field allows software to control the maximum number of
simultaneously in-flight INVALIDATE_IOTLB_PAGES transactions that the IOMMU attempts to
initiate with any one particular QueueID. The appropriate value for Maxpend is device-dependent
and can be obtained from the device's IOTLB capability.

23:16
+00

PASID[15:8]. Must be zero when two-level translation is not enabled (see DTE[GV] in Table 7);
ignored when GN=0.

15:0
+00

DeviceID[15:0].

Table 36: INVALIDATE_IOMMU_PAGES Fields (Continued)

Bits Description

[AMD Public Use]

Architecture 129

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

31:28
+04

04h. INVALIDATE_IOTLB_PAGES command number.

27:24
+04

PASID[19:16]. Must be zero when two-level translation is not enabled (see DTE[GV] in Table 7);
ignored when GN=0.

23:16
+04

PASID[7:0]. Must be zero when two-level translation is not enabled (see DTE[GV] in Table 7);
ignored when GN=0.

15:0
+04

QueueID[15:0]. The QueueID is used to limit the outstanding invalidations for all virtual devices
sharing the queue for devices that implement multiple virtual functions sharing a single invalidation
queue. Some devices implement a physical function and multiple virtual functions in which each
physical and virtual function has a unique DeviceID. The QueueID is an abstract number
representing the shared queue. When the IOMMU receives an invalidate IOTLB command, the
command targets the DeviceID. An implementation may have a single queue (likely associated with
the physical function) to receive invalidates for the physical function or any of its virtual functions.
To manage the flow control of the unified device invalidate-queue, it is not sufficient to track the
outstanding entries based on DeviceID.

31:12
+08

Address[31:12]. Address to invalidate.

11:6
+08

Reserved.

5:4
+08

Type: Indicates the type of IOTLB invalidation to perform. If MMIO Offset
0030h[InvIotlbTypeSup]=0, Type must be set to 00b. The mechanisms used to communicate
enhanced IOTLB invalidations to an ATS device and the methods to determine whether an I/O
device supports Type 01b or 10b IOTLB invalidations are outside the scope of this specification.

00b=Standard ATS Invalidation
01b=Invalidate virtual address range without flushing dependent transactions
10b=Invalidate virtual address range and flush all outstanding transactions including those outside
the specified address range
11b=Reserved

3 +08 Reserved

2
+08

GN: guest/nested. 0 = Address[52:12] is a guest physical address and matching nested translations
are invalidated. The corresponding guest translations must be invalidated if guest address translation
is active for any DeviceID within the domain. 1 = Address[52:12] is a guest virtual address and
matching guest translations are invalidated for the specified PASID. No nested translations need to
be invalidated.
Note: When two-level translation is not supported or not enabled, GN must be zero (see DTE[GV] in
Table 7).
Implementation Note: When GN = 0, the IOMMU must invalidate the affected guest translations,
but it may invalidate more guest translations for the domain, up to and including all guest translations
for the domain.

Table 37: INVALIDATE_IOTLB_PAGES Fields (Continued)

Bits Description

[AMD Public Use]

130 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Since both the IOMMU and the remote IOTLB(s) may contain cached translations for a domain, soft-
ware must take care to perform invalidations in an order that ensures that no stale translations persist
anywhere in the system. After updating a domain's page tables, software should first issue an INVAL-
IDATE_IOMMU_PAGES command for the domain; then, if the domain contains any devices with
their own IOTLBs, software should follow with INVALIDATE_IOTLB_PAGES commands for each
such device.

When GN=0, Address is a guest physical address and PASID[15:0] is ignored by the IOMMU. The
GPA is transmitted to the PCIe peripheral without a TLP prefix. When GN=1, Address is a guest vir-
tual address and software programs PASID[15:0] to indicate the process address space to use. The
GVA is transmitted to a PCIe peripheral using the TLP prefix.

Implementation Note: When issuing the completion notification (Section 2.4.1 [COMPLE-
TION_WAIT]), the IOMMU must ensure that all DMA write transactions that have already been
translated have been pushed to the host bridge. A way to meet this is:

Prior to sending the invalidation completion indication (interrupt or status write) the IOMMU must:

• Send an upstream Fence command in the base channel if the channel is being used and if the
IOMMU supports translating request for more than one upstream stream (more than one unitID is
in use).

• Additionally send an upstream Fence command followed by a Flush command in the isochronous
channel if the channel is being used and if the IOMMU supports translating requests in both the
isochronous and the base channels. The invalidation completion must wait for the Flush response
to be received.

Software Note: In order to flow-control invalidations to functions that share a common invalidation
queue, software must set the QueueID to a unique identifier that represents the shared queue. The
DeviceID of the physical function associated with the virtual functions may be used as the QueueID
to insure the IOMMU issues a limited number of outstanding invalidates to the given queue.

Software Note: To completely tear down address translation for a domain, software should:
• update the IOMMU’s in-memory data structures,
• INVALIDATE_DEVTAB_ENTRY for all devices in the domain,

1
+08

Reserved.

0
+08

S: size. 0=the size of the invalidation is 4 Kbytes. 1=the size of the invalidation is determined by the
first zero bit in the address starting from Address[12] (see encoding in Table 14). When S=1, the size
of the invalidate is determined by the first zero bit in the address starting from Address[12]. To
invalidate the entire contents of an IOTLB, set S=1 and Address[63:32]=7FFF_FFFFh and
Address[31:12]=F_FFFFh in the INVALIDATE_IOTLB_PAGES command. When
Address[63:32]=FFFF_FFFFh, the IOMMU behavior is undefined.

31:0
+12

Address[63:32]. Address to invalidate.

Table 37: INVALIDATE_IOTLB_PAGES Fields (Continued)

Bits Description

[AMD Public Use]

Architecture 131

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

• INVALIDATE_IOMMU_PAGES for the domain, and
• INVALIDATE_IOTLB_PAGES for any IOTLB-capable devices that had been assigned to the

domain. After COMPLETION_WAIT on the previous steps the new mapping is guaranteed to be
in effect.

2.4.5 INVALIDATE_INTERRUPT_TABLE

The INVALIDATE_INTERRUPT_TABLE command instructs the IOMMU to invalidate all cached
interrupt information for the device, including the guest virtual APIC table base pointer (if cached).

Figure 48: INVALIDATE_INTERRUPT_TABLE Command Format

2.4.6 PREFETCH_IOMMU_PAGES

When supported (MMIO Offset 0030h[PreFSup]=1), the PREFETCH_IOMMU_PAGES command
instructs the IOMMU to load address translation information into its translation cache for the speci-
fied DeviceID. When not supported (MMIO Offset 0030h[PreFSup]=0), the PREFETCH_IOM-
MU_PAGES (06h) command is reserved and causes an ILLEGAL_COMMAND_ERROR.

The PREFETCH_IOMMU_PAGES command is advisory so the IOMMU may fetch zero or more
translation entries in response to the command, not to exceed the value of PFCount[7:0]. An IOMMU
treats the PREFETCH_IOMMU_PAGES command as an invalid command when MMIO Offset

31 28 27 16 15 0

Reserved DeviceID[15:0] +00

05h Reserved +04

Reserved +08

Reserved +12

Table 38: INVALIDATE_INTERRUPT_TABLE command Fields

Bits Description

31:16
+00

Reserved.

15:0
+00

DeviceID[15:0].

31:28
+04

05h. INVALIDATE_INTERRUPT_TABLE command number.

27:20
+04

Reserved.

31:0
+08

Reserved.

31:0
+12

Reserved.

[AMD Public Use]

132 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

0030h[PreFSup]=0. Based on internal status and workloads, the IOMMU may defer fetching the
translation information. If an entry is already in the TLB, the IOMMU may adjust LRU or other con-
trol tags to lengthen cache residency. The IOMMU calculates permissions for a PREFETCH_IOM-
MU_PAGES command as it would for a translation that was initiated by device action. Once a
translation entry is loaded into the TLB by PREFETCH_IOMMU_PAGES, it is subject to ejection
and invalidation like any other entry. A PREFETCH_IOMMU_PAGES command must be processed
or discarded (ignored) before processing any following invalidation commands that affect the same
virtual addresses. The PREFETCH_IOMMU_PAGES command does not affect the contents of
remote IOTLB caches.

When GN=0, Address[63:12] is an GPA so the IOMMU walks nested page tables and PASID is
ignored. When GN=1, Address[63:12] is a GVA so the IOMMU walks guest and nested page tables
and PASID is used to select the guest table.

Figure 49: PREFETCH_IOMMU_PAGES Command Format

31 28 27 24 23 20 19 16 15 12 11 5 4 3 2 1 0

PFCount[7:0] Reserved DeviceID[15:0] +00

06h Reserved PASID[19:0] +04

Address [31:12] Reserved

In
va

l

Res GN Res S +08

Address [63:32] +12

Table 39: PREFETCH_IOMMU_PAGES Fields

Bits Description

31:24
+00

PFCount[7:0]: prefetch count. Number of translations to prefetch. Zero is treated as a directive to
fetch a single translation.

23:16
+00

Reserved.

15:0
+00

DeviceID[15:0].

31:28
+04

06h. PREFETCH_IOMMU_PAGES command number.

27:20
+04

Reserved.

19:0
+04

PASID[19:0]. Must be zero when two-level translation is not enabled (see DTE[GV] in Table 7).
Ignored when GN=0.

31:12
+08

Address[31:12]. Fetch the address translation information for addresses starting with this value. This
is a guest virtual address when GN=1 and is a guest physical address when GN=0.

11:5
+08

Reserved.

[AMD Public Use]

Architecture 133

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

When Inval=1, the IOMMU must invalidate or replace any existing translation entries in its cache
related to Address[63:12]; in effect, this combines an INVALIDATE_IOMMU_PAGES command
with a following PREFETCH_IOMMU_PAGES command. When Repl=1, the IOMMU is advised to
replace an existing translation entry in the case of a cache conflict.

For a GVA, the PREFETCH_IOMMU_PAGES command is not supported and GN must be pro-
grammed to 0. .

For a GPA, software must program GN=0 and the PASID is ignored; the Address field contains a
GPA. The size of the prefetch page is determined by the S bit and the Address. If S=0, the size of the
prefetch page is 4 Kbytes. If S=1, the size of the prefetch page is determined by the first zero bit in the
address starting from Address[12]. The number of descriptors to fetch is determined by the value of
PFCount[7:0]. The PFCount value is unsigned and a PFCount value of 0x00 is treated as 0x01.

2.4.6.1 Event Processing for PREFETCH_IOMMU_PAGES

The IOMMU checks for unusual conditions while processing a PREFETCH_IOMMU_PAGES com-
mand. Because such an event would originate as the result of a command in the command queue, nei-
ther a Master Abort nor a Target Abort can be caused by a PREFETCH_IOMMU_PAGES command.
The PREFETCH_IOMMU_PAGES command never generates an event related to interrupts or inter-
rupt tables.

System hardware events are reported when detected and the IOMMU stops processing the command
queue:

• Section 2.5.4 [DEV_TAB_HARDWARE_ERROR Event],
• Section 2.5.5 [PAGE_TAB_HARDWARE_ERROR Event], and
• Section 2.5.7 [COMMAND_HARDWARE_ERROR Event].

These events are reported as soon as detected in the IOMMU hardware event reporting registers (see
Section 2.5.16.2 [I/O Hardware Event Reporting Registers]). These events are also reported in the

4
+08

Inval: invalidate first. 0=Prefetch only. 1=Invalidate any matching entry, then prefetch.
Implementation Note: the IOMMU may ignore the prefetch portion of the operation but the
invalidation is mandatory if Inval=1.

3
+08

Reserved.

2
+08

GN: guest/nested. 0=Address[52:12] is a GPA to be processed through nested translations.
1=reserved (must not be used by software; ignored by hardware).

1
+08

Reserved.

0
+08

S: size. 0=the size of the prefetched page is 4 Kbytes. 1=the size of the prefetched page is determined
by the first zero bit in the address starting from Address[12].

31:0
+12

Address[63:32]. Address to invalidate.

Table 39: PREFETCH_IOMMU_PAGES Fields(Continued)

Bits Description

[AMD Public Use]

134 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

event log when logging is enabled and an interrupt is signaled when enabled.

Other errors may be reported as soon as possible or postponed until a peripheral access uses the TLB
entry:

• Section 2.5.2 [ILLEGAL_DEV_TABLE_ENTRY Event],
• Section 2.5.3 [IO_PAGE_FAULT Event].

An IO_PAGE_FAULT event is not reported when processing an PREFETCH_IOMMU_PAGES
command; reporting occurs when the entry is used by a peripheral transaction and is controlled by SA
or SE in the corresponding DTE when DTE[V]=1. Table entries marked not-valid or not-present can-
not cached by the IOMMU so no error is reported in these cases; the IOMMU will process any error
when it rewalks the page tables later to service a peripheral transaction. A PREFETCH_IOM-
MU_PAGES command does not indicate a read, write, or execute attribute so the IOMMU cannot
report an access violation error; the IOMMU will process an access violation when it later services a
peripheral transaction.

The following events are never reported as a result of a PREFETCH_IOMMU_PAGES command:
• Section 2.5.8 [IOTLB_INV_TIMEOUT Event],
• Section 2.5.9 [INVALID_DEVICE_REQUEST Event]
• Section 2.5.10 [INVALID_PPR_REQUEST Event], and
• Section 2.5.11 [EVENT_COUNTER_ZERO Event].

If the IOMMU does not prefetch the page table information, a latent problem in the page table struc-
tures will not be reported by the IOMMU.

For the purposes of a COMPLETION_WAIT command (see Section 2.4.1 [COMPLETION_WAIT]),
the IOMMU may determine that the PREFETCH_IOMMU_PAGES command with Inval=0 com-
pletes immediately when the prefetch hint is ignored. A COMPLETION_WAIT command must not
signal completion before the completion of a PREFETCH_IOMMU_PAGES command with
Inval = 1.

If Prefetch is not supported, this command causes an ILLEGAL_COMMAND_ERROR.

Software Note: When issuing PREFETCH_IOMMU_PAGES commands, the size of the prefetch must
be greater than or equal to the size of the largest page being prefetched.

2.4.7 COMPLETE_PPR_REQUEST

When supported, the COMPLETE_PPR_REQUEST command is used to instruct the IOMMU to
issue a PCIe completion packet for the specified DeviceID with the supplied CompletionTag. When
not supported, the COMPLETE_PPR_REQUEST command is reserved and causes an ILLE-
GAL_COMMAND_ERROR. See MMIO Offset 0030h[PPRSup] to determine if COMPLETE_P-
PR_REQUEST is supported.

After software has processed a peripheral page request (see Section 2.6 [Peripheral Page Request
(PPR) Logging]), it must issue a COMPLETE_PPR_REQUEST command to the IOMMU for the
originating DeviceID.

[AMD Public Use]

Architecture 135

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 50: COMPLETE_PPR_REQUEST Command Format

Software Note: The IOMMU does not validate the contents of the CompletionTag field. Software must
use the PRI Page Request Group Index from the PPR request.

For GVA transactions, software should program GN=1, DeviceID, CompletionTag, and PASID.
When GN=1, the IOMMU will insert the PASID into the PCIe TLP prefix. For GPA transactions,

31 28 27 20 19 16 15 12 11 3 2 1 0

Reserved DeviceID[15:0] +00

07h Reserved PASID[19:0] +04

Reserved GN Resv +08

Reserved CompletionTag[15:0] +12

Table 40: COMPLETE_PPR_REQUEST Fields

Bits Description

31:16
+00

Reserved.

15:0
+00

DeviceID[15:0].

31:28
+04

07h. COMPLETE_PPR_REQUEST command number.

27:20
+04

Reserved.

19:0
+04

PASID[19:0]. Must be zero when two-level translation is not enabled (see DTE[GV] in Table 7);
ignored when GN=0.

31:3
+08

Reserved.

2
+08

GN: guest/nested. 0=PASID is ignored. 1=valid PASID. When two-level translation is not enabled,
GN must be zero (see DTE[GV] in Table 7).

1:0
+08

Reserved.

31:16
+12

Reserved.

15:0
+12

CompletionTag[15:0]. For PCIe:
CompletionTag[15:12] contains the PRI Response
Code, CompletionTag[11:9] must be zero and
CompletionTag[8:0] contains the PRI Page Request
Group Index taken from the PPRtag in the
PAGE_SERVICE_REQUEST request entry (see
Section 2.6.3 [Peripheral Page Request Entry]). For
other bus types: Reserved.

CompletionTag[15:0].
For HyperTransport: Reserved.

[AMD Public Use]

136 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

software should program GN=0, DeviceID, and CompletionTag. When GN=0, the PASID field is
ignored by the IOMMU and no PCIe TLP prefix is inserted.

If an error occurs while processing a COMPLETE_PPR_REQUEST command, it is reported in the
event log (see Section 2.5.10 [INVALID_PPR_REQUEST Event]).The contents of Completion-
Tag[15:0] depend on the peripheral bus type; only transactions for the PCIe bus are defined.

2.4.8 INVALIDATE_IOMMU_ALL

When supported, the INVALIDATE_IOMMU_ALL command instructs the IOMMU to clear all
address translation and interrupt remapping information from its translation caches for the all Device-
IDs and all Domains. When not supported, the INVALIDATE_IOMMU_ALL command is reserved
and causes an ILLEGAL_COMMAND_ERROR. See MMIO Offset 0030h[IASup].

The INVALIDATE_IOMMU_ALL command instructs the IOMMU to invalidate all cached informa-
tion for interrupt remapping and address translation for guest and nested translations, including
cached portions of the Device Table, the guest CR3 table, page directory entries, page table entries,
and interrupt remapping entries. Use of this command generates an ILLEGAL_COMMAND_ER-
ROR event when not supported by the IOMMU (see MMIO Offset 0030h[IASup] and Section 2.5.6
[ILLEGAL_COMMAND_ERROR Event]). The INVALIDATE_IOMMU_ALL command does not
affect the contents of any remote IOTLB or IOMMU registers (see Chapter 3, "Registers") beyond
routine command processing updates. Software must issue a INVALIDATE_IOTLB_PAGES com-
mand to flush a remote IOTLB. At the completion of an INVALIDATE_IOMMU_ALL command, all
IOMMU caches are empty. The results of outstanding page table walks are discarded. Any pending
update operations to the page tables for Accessed and Dirty bits must be completed normally. The
operational status of the IOMMU is not affected so that translations, command- and event-processing,
address translation service, and peripheral page service processing continue normally. The contents of
the MMIO registers are not affected except to advance the Command Buffer Head Pointer Register
[MMIO Offset 2000h] beyond the INVALIDATE_IOMMU_ALL command. The IOMMU may start
reloading internal caches with information at any time after the INVALIDATE_IOMMU_ALL com-
mand completes. The INVALIDATE_IOMMU_ALL command is not supported in a guest command
buffer. For a guest, HV should emulated guest IOMMU to have IASup set to 0. If a guest command
buffer receives the INVALIDATE_IOMMU_ALL command, it causes an ILLEGAL_COM-
MAND_ERROR.To invalidate the entire address space of an individual guest, see Section 2.4.3
[INVALIDATE_IOMMU_PAGES].

Figure 51: INVALIDATE_IOMMU_ALL Command Format

31 28 16 15 3 2 1 0

Reserved +00

08h Reserved +04

Reserved +08

Reserved +12

[AMD Public Use]

Architecture 137

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.4.9 INSERT_GUEST_EVENT Command

When supported, the INSERT_GUEST_EVENT command is always written in pairs with a guest
event entry immediately after it into the command buffer, which takes up two command entries.
INSERT_GUEST_EVENT instructs the IOMMU to inject the following guest event entry to be
injected to the guest event log of the guest specified by GuestID[15:0].

IOMMU will not validate the contents of the guest event entry before inject into the guest event log.
When the command is only supported, an ILLEGAL_COMMAND_ERROR event is detected. This
command is only supported if MMIO[vIommuSup]=1 and MMIO[vIommuEn]=1.
INSERT_GUEST_EVENT command is only used in host command buffer, and should not be used in
guest virtualized command buffer. An INSERT_GUEST_EVENT in guest virtualized command buf-
fer will result in an ILLEGAL_COMMAND_ERROR detection.

2.4.10 RESET_VMMIO Command

When Hypervisor wants to reinitialize the vIOMMU MMIO registers of a particular guest, it can
inject RESET_VMMIO Command into the Host Command Buffer.

Table 41: INVALIDATE_IOMMU_ALL Fields

Bits Description

31:0
+00

Reserved.

31:28
+04

08h. INVALIDATE_IOMMU_ALL command number.

27:0
+04

Reserved.

31:0
+08

Reserved.

31:0
+12

Reserved.

Reserved

31 0

+00

Reserved

Reserved

28 27 1516

+0409h Reserved GuestID[15:0]

+08

+12

[AMD Public Use]

138 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This command is only valid when the vIOMMU feature is enabled and only valid in the host com-
mand buffer, otherwise it is handled as an invalid command and an ILLEGAL_COMMAND_ER-
ROR event is logged into the host event log.

When IOMMU HW detects a vIOMMU fault, the IOMMU might decide to halt the vIOMMU com-
mand processing (by clearing the vCmdRun) or the whole vIOMMU functionality (by clearing both
vCmdRun and vIommuRun). SW must first clear the corresponding vIommuEn/vCmdEn bit(s) then
set the Enable bit(s) in order to restart the functionality.

2.4.11 IOMMU Ordering Rules

The IOMMU must ensure that proper ordering is maintained between invalidation command types
and between invalidation commands and the translation process.

2.4.11.1 Invalidation Command Ordering Requirements
The IOMMU must ensure that the following command ordering rules are followed for invalidation
commands:
• When an INVALIDATE_IOMMU_PAGES or INVALIDATE_INTERRUPT_TABLE command

is received, the IOMMU must ensure that all cache entries associated with any prior
INVALIDATE_DEVTAB_ENTRY commands are invalidated from the cache before executing
the command.

• When an INVALIDATE_IOTLB_PAGES command is received, the IOMMU must ensure that all

31 30 28 27 26 16 15 0

V
C

m
d

Reserved All Reserved GuestID +00

0Ah Reserved +04

Bits Description

31
+00

VCmd. Virtualized Command Buffer. 1=Reset virtual command buffer for the specific
Guest.

30:28
+00

Reserved.

27
+00

All. IAll. 1=Reset the whole virtual IOMMU for the specific Guest. The VMVld in VF
Control MMIO Offset 10h will be reset as well.

26:16
+00

Reserved.

15:0
+00

GuestID. Specific the ID of the Guest.

31:27
+04

0Ah. RESET_VMMIO command number.

26:0
+04

Reserved.

[AMD Public Use]

Architecture 139

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

cache entries associated with any prior INVALIDATE_DEVTAB_ENTRY or
INVALIDATE_IOMMU_PAGES commands are invalidated from the cache before executing the
command.

2.4.11.2 Invalidation Commands Interaction Requirements
Invalidation commands are considered complete only when the IOMMU can ensure there are no
DMA transactions in flight anywhere in the system fabric that relied on translation cache contents
prior to invalidation. To ensure this property is achieved, the IOMMU must follow these rules:
• The IOMMU must ensure that read responses for all DMA outstanding read transactions that

match the invalidation command have been received by the IOMMU.
• HyperTransport™ tunnels that support address translation can achieve this property by

maintaining a counter that is incremented when a non-posted transaction is forwarded to the
processor through the tunnel and is decremented when a response is forwarded from the
processor through the tunnel. The invalidation command can be considered complete when
the counter reaches zero.
The tunnel may temporarily block upstream traffic to cause the counter to resolve to zero in a
timely manner, ensuring that forward progress of the invalidation command is made.

• The IOMMU must ensure that all DMA write transactions that have already been translated have
been pushed to the host bridge by:
Prior to sending invalidation completion indication (interrupt or status write), the IOMMU must:
• Send an upstream Fence command in the base channel if the IOMMU supports translating

requests for more than one upstream stream (more than one unitID is in use).
• Send an upstream Fence command followed by a Flush command in the isochronous channel

if the IOMMU supports translating requests in both the isochronous and the base channels.
The invalidation completion must wait for the Flush response to be received.

The IOMMU must ensure that both of these requirements are met prior to executing a subsequent
COMPLETION_WAIT command.

An invalidation command matches an outstanding translation if the command:
• Invalidates the Device Table entry for the I/O device that caused a translation to be initiated, or
• Invalidates the virtual address range being translated for a device.

2.5 Event Logging
The IOMMU reports events to the host software by means of a shared circular buffer in system mem-
ory. The IOMMU writes event records into the buffer. If the IOMMU needs to report an event but
finds that the event log is already full, it sets MMIO Offset 2020h[EventOverflow]. The IOMMU can
be configured to signal an interrupt whenever the event log is written or overflows using Capability
Offset 10h[MsiNum]. The host software increments the IOMMU's head pointer to indicate to the
IOMMU that it has consumed event log entries.

When supported, the IOMMU generates event log entries for guest translations as well as host trans-
lations using Capability Offset 10h[MsiNum]. Because some event reports are caused by hardware
events that may make it impossible to update the event log, a set of MMIO registers has been defined
to report selected event information. The IOMMU Hardware Event Upper Register [MMIO Offset

[AMD Public Use]

140 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

0040h] and IOMMU Hardware Event Lower Register [MMIO Offset 0048h] contain the same infor-
mation found in an event log entry. The IOMMU Hardware Event Status Register [MMIO Offset
0050h] contains status bits that indicate that the information in the three registers is valid (HEV) and
if an overflow has occurred (HEO). More information is contained in Section 2.5.16 [IOMMU Event
Reporting].

Figure 52: Event Log in System Memory

The Event Log Base Address Register [MMIO Offset 0010h] is used to program the system physical
address and size of the event log. The event log occupies contiguous physical memory starting at the
programmed base address, up to the programmed size. The size of the event log must be a multiple of
4 Kbytes (to facilitate “modulo N” indexing for circularity) and can be as large as 32768 entries (cor-
responding to a 512 kilobyte buffer). The address of the event log must be aligned to a multiple of
4 Kbytes.

In addition to the Event Log Base Address Register [MMIO Offset 0010h], the IOMMU maintains
two other registers associated with the event log: the Event Log Head Pointer Register [MMIO Offset
2010h], which points to the next event that software will read, and the Event Log Tail Pointer Regis-
ter [MMIO Offset 2018h], which points to the next event to be written by the IOMMU. These regis-
ters are located in MMIO space.

When the Event Log Base Address Register [MMIO Offset 0010h] register is written, the Event Log
Head Pointer Register [MMIO Offset 2010h] and the Event Log Tail Pointer Register [MMIO Offset
2018h] are cleared to 0. When the Event Log Head Pointer Register [MMIO Offset 2010h] and the
Event Log Tail Pointer Register [MMIO Offset 2018h] are equal, the event log is empty. The Event
Log Tail Pointer Register [MMIO Offset 2018h] is incremented by the IOMMU after writing an
event to the event log. The event log is full when all slots but one are used. The event log has over-
flowed when an event occurs that is to be logged and would otherwise consume the last unused slot.

When the Event Log has overflowed, the EventOverflow bit is set in the IOMMU Status Register
[MMIO Offset 2020h] and any data for new events is discarded. An interrupt can be configured to
notify software of the new event using Capability Offset 10h[MsiNum]; software should check
MMIO Offset 2020h[EventOverflow] to determine if the event log data was discarded. The host soft-
ware must make space in the event log after an overflow by reading entries (by adjusting the head

circular buffer of 128-bit event records (in system memory)

+112

+96

+80

+64

+48

+32

+16

+0

system software
(consumes events)

IOMMU
(records events)

tail pointer

write
s

head pointer

rea

ds

suggested variablesIOMMU registers

buffer address

buffer size

buffer address

buffer size

head pointer

[AMD Public Use]

Architecture 141

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

pointer) or by resizing the log. Event logging may then be restarted.

The optional Event Log dual buffer feature adds support for a second event log (Event Log B). See
Section 2.5.17 [Event Log Dual Buffering] on page 174.

2.5.1 Event Log Restart Procedure
The IOMMU event logging is disabled after system reset and when the event log overflows. The
IOMMU discards event reports until event logging is enabled, setting the EventOverflow bit in the
IOMMU Status Register [MMIO Offset 2020h] to indicate the loss of event information. To restart
the IOMMU event logging after the event log overflows, use the following procedure.
• Wait until EventLogRun=0b in the IOMMU Status Register [MMIO Offset 2020h] so that all log

entries are completed as circumstances allow. EventLogRun must be 0b to modify the event log
registers safely.

• Write EventLogEn=0b in the IOMMU Control Register [MMIO Offset 0018h].
• As necessary, change the following registers (e.g., to relocate or resize the event log).

• the Event Log Base Address Register [MMIO Offset 0010h],
• the Event Log Head Pointer Register [MMIO Offset 2010h], and
• the Event Log Tail Pointer Register [MMIO Offset 2018h].

• Write the IOMMU Status Register [MMIO Offset 2020h] with EventOverflow = 1b to clear the
bit (W1C).

• Write the IOMMU Control Register [MMIO Offset 0018h] with EventLogEn = 1b, and either set
MMIO Offset 0018h[EventIntEn] to enable the Event log interrupt or clear the bit to disable it.

The IOMMU now creates event log entries for new events.

[AMD Public Use]

142 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Figure 53: Event Log State Diagram

All events recorded by the IOMMU consist of a 4-bit EventCode together with two operands, which
may be respectively 60 and 64 bits long, for a total of 128 bits (16 bytes) per record. Events that are
logged because of errors that occur while performing Device Table or page table walks always record
the DeviceID and address from the transaction that was being translated.

The IOMMU must set the Coherent bit in the HyperTransport™ packet when generating writes to the
event log.

Figure 54: Generic Event Log Buffer Entry

31 28 27 0

First event code dependent operand [31:0] +00

EventCode[3:0] First event code dependent operand [59:32] +04

Second event code dependent operand [31:0] +08

Second event code dependent operand [63:32] +12

Set EventLogEn = 0

1

[AMD Public Use]

Architecture 143

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Events reported by the IOMMU are listed in Table 42. The figures that follow give details for each
event type with an EventCode as shown embedded in Figure 54.

In Table 43 through Table 53, each event type is marked to show that it can be caused only by host
software or by hardware.

For details on ILLEGAL_DEV_TABLE_ENTRY events, see Section 2.5.2.

Table 42: Event Type Summary

EventCode Name Value General Error Type Details

Reserved 0000b Reserved. N/A

ILLEGAL_DEV_TABLE_ENTRY 0001b Non-zero reserved bit or reserved encoding in DTE. Table 43

IO_PAGE_FAULT
(memory transaction or interrupt
remapping)

0010b DeviceID not in the range specified by the Device
Table size.

Table 44

IO_PAGE_FAULT
(memory transaction)

PTE programming problems.

Virtual address problems.

Device attempts to violate page protection settings.

IO_PAGE_FAULT
(interrupt remapping)

IRTE programming problems.

Disallowed or malformed interrupt requests.

DEV_TAB_HARDWARE_ERROR 0011b Hardware problem as IOMMU reads Device Table. Table 45

PAGE_TAB_HARDWARE_ERROR 0100b Hardware problem as IOMMU accesses page table. Table 46

ILLEGAL_COMMAND_ERROR 0101b Invalid command buffer entry. Table 48

COMMAND_HARDWARE_ERROR 0110b Hardware problem as IOMMU reads command
buffer.

Table 47

IOTLB_INV_TIMEOUT 0111b Invalidation response not received from IOTLB
device.

Table 49

INVALID_DEVICE_REQUEST 1000b Device attempts access to proscribed address range. Table 50,
Table 51,
Table 64

Device attempts prohibited access.

INVALID_PPR_REQUEST 1001b Invalid or malformed PRI request from peripheral. Table 52

Invalid or malformed
COMPLETE_PPR_REQUEST command.
Note: the COMPLETE_PPR_REQUEST command
may be treated as an
ILLEGAL_COMMAND_ERROR (see Table 52 for
details).

EVENT_COUNTER_ZERO 1001b Informational. Table 67

Reserved 1010b-
1111b

Reserved; not used. N/A

[AMD Public Use]

144 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

For details on IO_PAGE_FAULT events, see Section 2.5.3.

Table 43: ILLEGAL_DEV_TABLE_ENTRY Event Types

Event Type Cause IOMMU Response

Non-zero reserved bit in a Device Table entry. SW For a translation request or memory access,
Target Abort transaction.
For a command, abort the command.
Create event log entry if enabled.
Signal interrupt if enabled (see Capability Offset
10h[MsiNum]).

Reserved encoding in the IntTabLen field for a
Device Table entry with IntCtl=10b.

SW

Reserved encoding in the IoCtl field. SW

Reserved encoding in the IntCtl field. SW

Table 44: IO_PAGE_FAULT Event Types

Event Type Cause IOMMU Response

Memory transaction

Reserved paging mode in Device Table entry. SW For an untranslated request, Target Abort
transaction and create event log entry if enabled.
Signal interrupt if enabled (see Capability Offset
10h[MsiNum]).
For a translation request, return response with
data and with R and W bits set to 0; no event log
entry is created.
For a command, abort the command and create
log entry if enabled. Signal interrupt if enabled
(see Capability Offset 10h[MsiNum]).

Page size encoding in a PTE that is smaller than
the default page size of the PTE.

SW

Page size encoding in a PTE that is larger than
the default page size of the PTE.

SW

Invalid level encoding in a page table entry,
including exceeding limit specified by MMIO
Offset 0030h[GATS, HATS].

SW

A non-zero bit in a bit position higher than root
page table’s level in DTE. Virtual address bits
associated with a skipped page level are not all
zero.

SW

Non-zero reserved bit in a PTE. SW

Valid bit not set in page table entry. HW, SW

TV bit not set in Device Table entry for
untranslated non-interrupt transaction.

HW, SW

PASID is outside the range specified by MMIO
Offset 0030h[PASmax].

HW, SW

Device attempts a read transaction to a read
protected page.

HW, SW For untranslated request, Target Abort
transaction and create event log entry if enabled.
Signal interrupt if enabled (see Capability Offset
10h[MsiNum]).
For translation request, return response with data
and with R and W bits from the page translation
information; no event log entry is created.
Never generated by a command.

[AMD Public Use]

Architecture 145

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

For details on DEV_TAB_HARDWARE_ERROR events, see Section 2.5.4.

Device attempts a write transaction to a write
protected page.

HW, SW

Device attempts an instruction fetch from a no-
execute page.

HW, SW

Device attempts to access a supervisor page
using user privilege.

HW, SW Access is blocked and an event log entry is
created.

Interrupt remapping

Interrupt request that addresses an IRTE that is
beyond the end of the table.

HW, SW For interrupt transaction, Target Abort
transaction. Create event log entry if enabled.
Signal interrupt if enabled (see Capability Offset
10h[MsiNum]).
Never generated by a command.

Non-zero reserved bit in an IRTE. SW

Interrupt request that targets an IRTE with
RemapEn=0.

HW, SW

Interrupt request that targets an IRTE with
reserved IntType.

SW

Interrupt request aborted by entry in Table 10
(Pass fields) or Table 19 (entries causing target
abort).

HW, SW

Interrupt transaction with PASID. HW

Upstream SMI request fails to match active SMI
filter register (see Section 1.3.10 [SMI Filter]).

HW Create event log entry if enabled (see MMIO
Offset 0018h[SmiFLogEn]). Signal interrupt if
enabled (see Capability Offset 10h[MsiNum]).
Never generated by a command.

Memory transaction or interrupt remapping

DeviceID not in the range specified by the
Device Table size.

HW For a translation request, Master Abort
transaction.
For a memory transaction, Target Abort
transaction.
For a command, abort the command.
Create event log entry if enabled.
Signal interrupt if enabled (see Capability Offset
10h[MsiNum]).

Table 44: IO_PAGE_FAULT Event Types (Continued)

Event Type Cause IOMMU Response

[AMD Public Use]

146 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

For details on PAGE_TAB_HARDWARE_ERROR events, see Section 2.5.5.

For details on COMMAND_HARDWARE_ERROR events, see Section 2.5.7.

For details on ILLEGAL_COMMAND_ERROR events, see Section 2.5.6.

Table 45: DEV_TAB_HARDWARE_ERROR Event Types

Event Type Cause IOMMU Response

Master abort received on Device Table read. HW For memory access or translation request, Target
Abort transaction.
For command, abort the command.
Create event log entry if enabled. Log event
information in the hardware event registers (see
Section 2.5.16.2 [I/O Hardware Event Reporting
Registers]). Signal interrupt if enabled (see
Capability Offset 10h[MsiNum]).

Target abort received on Device Table read. HW

Poisoned data received on Device Table read. HW

Table 46: PAGE_TAB_HARDWARE_ERROR Event Types

Event Type Cause IOMMU Response

Master abort received on page table access. HW For memory access or translation request, Target
Abort transaction.
For command, abort the command.
Create event log entry if enabled. Log event
information in the hardware error registers (see
Section 2.5.16.2 [I/O Hardware Event Reporting
Registers]). Signal interrupt if enabled (see
Capability Offset 10h[MsiNum]).

Target abort received on page table access. HW

Poisoned data received on page table access. HW

Table 47: COMMAND_HARDWARE_ERROR Event Types

Event Type Cause IOMMU Response

Master abort received on command buffer read. HW Halt command processing. Create event log
entry if enabled. Log event information in the
hardware event registers (see Section 2.5.16.2
[I/O Hardware Event Reporting Registers]).
Signal interrupt if enabled (see Capability Offset
10h[MsiNum]).

Target abort received on command buffer read. HW

Poisoned data received on command buffer read. HW

[AMD Public Use]

Architecture 147

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

For details on IOTLB_INV_TIMEOUT events, see Section 2.5.8.

For details on INVALID_DEVICE_REQUEST events, see Section 2.5.9 and Table 64.

Table 48: ILLEGAL_COMMAND_ERROR Event Types

Event Type Cause IOMMU Response

Non-zero reserved bit in a command buffer
entry.

HW, SW Halt command processing. Create event log
entry if enabled. Signal interrupt if enabled (see
Capability Offset 10h[MsiNum]).Unsupported command code in a command

buffer entry.
Note: COMPLETE_PPR_REQUEST is treated
as an ILLEGAL_COMMAND_ERROR if not
supported (see MMIO Offset 0030h[PPRSup]
and Table 52).

SW

IOMMU receives
INVALIDATE_IOTLB_PAGES and does not
support IOTLB commands (see Capability
Offset 00h[IotlbSup]).

SW

Table 49: IOTLB_INV_TIMEOUT Event Types

Event Type Cause IOMMU Response

Invalidation response not received from IOTLB
device.

HW Create event log entry if enabled. Signal
interrupt if enabled (see Capability Offset
10h[MsiNum]).
Never generated by a command.

[AMD Public Use]

148 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

For details on INVALID_DEVICE_REQUEST events, see Section 2.5.9 and Table 64.

For details on INVALID_PPR_REQUEST events, see Section 2.5.10.

Table 50: INVALID_DEVICE_REQUEST Event Types (Access)

Event Type Cause IOMMU Response

Read request or non-posted write in the interrupt
address range.

HW Target Abort transaction. Create event log entry
if enabled. Signal interrupt if enabled (see
Capability Offset 10h[MsiNum]).
Never generated by a command.

Pretranslated transaction received from an I/O
device with I=0 or V=0.

HW

Port I/O Space request from an I/O device with
IoCtl=00b.

HW

Posted write to the system management address
space from an I/O device with SysMgt=00b, or
with SysMgt=10b and the message is not an
INTx message, or a posted write to the address
translation range when Capability Offset
10h[HtAtsResv]=1 (see Table 3).

HW, SW

Read request or non-posted write in the system
management address range (if SysMgt != 11b),
or a read or a non-posted-write in the address
translation range when Capability Offset
10h[HtAtsResv]=1 (see Table 3). A request with
a PASID TLP prefix when guest translation is
not supported or not enabled for the DeviceID
(see Table 5).

HW, SW

Posted write to the Interrupt/EOI interrupt
address range from an I/O device with
IntCtl=00.

HW, SW

Posted write to a reserved interrupt address
range (see Table 3).

HW, SW

Access to the system management address range
when SysMgt=11b or to the port I/O space range
when IoCtl=10b, while V=1 and TV=0.

HW, SW

[AMD Public Use]

Architecture 149

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

For details on EVENT_COUNTER_ZERO events, see Section 2.5.11.

Table 51: INVALID_DEVICE_REQUEST Event Types (Translation Request)

Event Type Cause IOMMU Response

Translation request in the interrupt space, port
I/O space (if IoCtl=0xb), or system management
address range (if SysMgt != 11b).

HW Target Abort transaction. Create event log entry
if enabled. Signal interrupt if enabled (see
Capability Offset 10h[MsiNum]).
Never generated by a command.Translation request in the system management

address range when SysMgt=11b or in the port
I/O space range when IoCtl=10b, while V=1 and
TV=0.

HW

Translation request with I=0 or V=0. HW Master Abort transaction. Create event log entry
if enabled. Signal interrupt if enabled (see
Capability Offset 10h[MsiNum]).
Never generated by a command.

DeviceID outside range.

Table 52: INVALID_PPR_REQUEST Event Summary

Event Type Cause IOMMU Response

PRI request received when
Capability Offset 00h[EFRSup]=0 or
MMIO Offset 0018h[PPREn]=0 or
MMIO Offset 0018h[PPRLogEn]=0.

HW Target Abort PRI transaction. Create event log
entry if enabled. Signal an interrupt if enabled
(see Capability Offset 10h[MsiNum]).

Never generated by a command.

COMPLETE_PPR_REQUEST command
received with GN=1 when guest translation is
not enabled.

SW Create event log entry if enabled. Signal an
interrupt if enabled (see Capability Offset
10h[MsiNum]).

NOTE: COMPLETE_PPR_REQUEST is treated as an ILLEGAL_COMMAND_ERROR if PPR is not
enabled (Capability Offset 00h[EFRSup]=0 or MMIO Offset 0018h[PPREn]=0 or
MMIO Offset 0018h[PPRLogEn]=0). See also Table 48.

Table 53: EVENT_COUNTER_ZERO Event Types

Event Type Cause IOMMU Response

Informational; performance counter incremented
to equal zero.

SW Create event log entry if enabled. Signal an
interrupt if enabled (see Capability Offset
10h[MsiNum]).

[AMD Public Use]

150 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.5.2 ILLEGAL_DEV_TABLE_ENTRY Event
When the IOMMU performs a lookup in the Device Table and encounters a Device Table entry that it
does not support or that is formatted incorrectly, the IOMMU writes an ILLE-
GAL_DEV_TABLE_ENTRY event to the event log as listed in Table 43.

Figure 55: ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry Format

Table 54: RMP_PAGE_FAULT Event Types

Event Type Cause IOMMU Response

Hypervisor Memory RMP check failure. SW For an untranslated request, Target Abort
transaction and create event log entry if enabled.
Signal interrupt if enabled (see Capability Offset
10h[MsiNum]).

For a translation request, return response with data
and with R and W bits set to 0 and create event log
entry if enabled. See Capability Offset
10h[MsiNum].

Guest Memory RMP check failure SW

IOMMU Memory RMP check failure SW

Table 55: RMP_HARDWARE_ERROR Event Types

Event Type Cause IOMMU Response

Master abort received on RMP Table read. HW For memory access or translation request, Target
Abort transaction.

Create event log entry if enabled. Signal interrupt if
enabled. See Capability Offset 10h[Msi-Num].

Target abort received on RMP Table read HW

Poisoned data received on RMP Table read HW

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 2 1 0

V
C

m
d

V
P

pr

V
E

ve
nt

R
sv

d

V
N

R

Reserved PASID[19:16] DeviceID[15:0] +00

0001b Reserved TR RZ ResRWRes I Res GN PASID[15:0] +04

Address[31:2] Res +08

Address[63:32] +12

Table 56: ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry Fields

Bits Description

31
+00

VCmd. Virtualized Command Buffer. This event occurs during processing of the virtual command
buffer. This bit is reserved and always 0 when vIOMMU feature is disabled.

30
+00

VPpr. Virtualized PPR Log. This event occurs during processingof the virtual PPR log. This bit is
reserved and always 0 when vIOMMU feature is disabled.

[AMD Public Use]

Architecture 151

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

29
+00

VEvent. Virtualized Event Log. This event occurs during processing of the virtualized event log.
This bit is reserved and always 0 when vIOMMU feature is disabled.

28
+00

Reserved.

27
+00

VNR. vIOMMU Non-Recoverable.
0= vIOMMU is fully operational. 1= vIOMMU is corrupted and vIommu context need to be
recreated. This bit is reserved and always 0 when vIOMMU feature is disabled.

26:20
+00

Reserved.

19:16
+00

PASID[19:16]: process space ID. The guest PASID[19:16] from the transaction when GN=1; 0h
when GN=0.

15:0
+00

DeviceID. Specifies the DeviceID that caused the Device Table lookup. The address of the
malformed Device Table entry can be determined using the DeviceID field.

31:28
+04

0001b. Specifies an ILLEGAL_DEV_TABLE_ENTRY.

27:25
+04

Reserved.

24
+04

TR: translation. 1=transaction that caused the Device Table lookup was a translation request.
0=transaction that caused the Device Table lookup was a transaction request.

23
+04

RZ: reserved bit not zero or invalid level encoding. 1=I/O page fault was caused by a non-zero
reserved bit in the Device Table entry. 0=I/O page fault was caused by an invalid level encoding in
the Device Table entry.

22
+04

Reserved.

21
+04

RW: read-write. 1=transaction that caused the Device Table lookup was a write. 0=transaction that
caused the Device Table lookup was a read. RW is only meaningful when TR=0 and I=0.

20
+04

Reserved.

19
+04

I: interrupt. 1=transaction that caused the Device Table lookup was an interrupt request.
0=transaction that caused the Device Table lookup was a memory request.

18:17
+04

Reserved.

16
+04

GN: guest/nested. 0=Transaction contained a GPA. 1=Transaction contained a GVA. See also
PASID.

15:0
+04

PASID[15:0]: process space ID. The guest PASID[15:0] from the transaction when GN=1; 0000h
when GN=0.

31:2
+08

Address[31:2]. The Address field contains the DVA that the device was attempting to access.

Table 56: ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry Fields (Continued)

Bits Description

[AMD Public Use]

152 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.5.3 IO_PAGE_FAULT Event

When the IOMMU performs a lookup in the page tables for a device and encounters an error condi-
tion in Table 44, the IOMMU writes the event log with an IO_PAGE_FAULT event as controlled by
the SA, SE, IG, and SupIOPF bits (see Figure 7 and Table 7 or Figure 15 and Table 10).

When supported, IO_PAGE_FAULT events generated by the SMI filter (see Section 1.3.10 [SMI Fil-
ter]) are reported with Address[63:0] containing the upstream SMI request address. The MMIO Off-
set 0018h[SmiFLogEn] bit controls the logging of IO_PAGE_FAULT events reported by the SMI
filter; the SA, SE, IG, and SupIOPF bits do not affect SMI filter logging.

I/O page faults detected for translation requests return a translation-not-present response (R=W=0) to
the device and are not logged in the event log.

Figure 56: IO_PAGE_FAULT Event Log Buffer Entry Format

1:0
+08

Reserved.

31:0
+12

Address[63:32]. The Address field contains the DVA that the device was attempting to access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0

V
C

m
d

V
P

pr

V
E

ve
nt

R
S

V
D

V
N

R

Reserved PASID[19:16] DeviceID[15:0] +00

0010b Reserved TR RZ PE RW PR I US NX GN D/P[15:0] +04

Address[31:0] +08

Address[63:32] +12

Table 57: IO_PAGE_FAULT Event Log Buffer Entry Fields

Bits Description

31
+00

VCmd. Virtualized Command Buffer. This event occurs during processing of the virtualized
command buffer. This bit is reserved and always 0 when vIOMMU feature is disabled.

30
+00

VPpr. Virtualized PPR Log. This event occurs during processing of the virtualized PPR log.
This bit is reserved and always 0 when vIOMMU feature is disabled.

29
+00

VEvent. Virtualized Event Log. This event occurs during processing of the virtualized event
log. This bit is reserved and always 0 when vIOMMU feature is disabled.

28
+00

Reserved.

Table 56: ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry Fields (Continued)

Bits Description

[AMD Public Use]

Architecture 153

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

27
+00

VNR. vIOMMU Non-Recoverable. 0= vIOMMU is fully operational. 1= vIOMMU is cor-
rupted and vIommu context need to be recreated. This bit is reserved and always 0 when
vIOMMU feature is disabled.

26:20
+00

Reserved.

19:16
+00

PASID[19:16]. The guest PASID[19:16] from the PASID TLP prefix when GN=1; 0h when
GN=0. See also D/P below.

15:0
+00

DeviceID. Specifies the DeviceID that caused the Device Table lookup. The address of the
Device Table entry can be determined using the DeviceID field.

31:28
+04

0010b. Specifies an IO_PAGE_FAULT entry.

27:25
+04

Reserved.

24
+04

TR: translation. 1=transaction that caused the Device Table lookup was a translation
request. 0=transaction that caused the Device Table lookup was a transaction request.

23
+04

RZ: reserved bit not zero or invalid level encoding. 1=I/O page fault was caused by a
non-zero reserved bit in the entry. 0=I/O page fault was caused by an invalid level encoding.
RZ is only meaningful when PR=1.

22
+04

PE: permission indicator. 1=peripheral did not have the permissions required to perform
the transaction. 0=peripheral had the necessary permissions. PE is only meaningful when
PR=1. Report PE using cumulative read and write permissions as determined during the
page walk as accomplished.

21
+04

RW: read-write. 1=transaction was a write. 0=transaction was a read. RW is only meaning-
ful when PR=1, TR=0, and I=0.

20
+04

PR: present. 1=transaction was to a page marked as present (including V=1b in DTE) or
interrupt marked as remapped (RemapEn=1). 0=transaction was to a page marked not pres-
ent or interrupt marked as blocked (RemapEn=0).

19
+04

I: interrupt. 1=transaction was an interrupt request. 0=transaction was a memory request.

18
+04

US: user-supervisor. 0=Supervisor privileges were asserted. 1=User privileges were
asserted.

17
+04

NX: no execute. NX bit as requested by peripheral when the upstream transaction has a
PASID TLP prefix; 0 when the upstream transaction lacks a PASID TLP prefix.

16
+04

GN: guest/nested. 0=Transaction used a nested address (GPA). 1=Transaction used a guest
address (GVA). See also PASID.

Table 57: IO_PAGE_FAULT Event Log Buffer Entry Fields (Continued)

Bits Description

[AMD Public Use]

154 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

An interrupt transaction that attempts to use a PASID is not allowed and the event is logged with I=1,
GN=1, and the D/P and PASID[19:16] fields contain the PASID when event logging is enabled.

2.5.4 DEV_TAB_HARDWARE_ERROR Event
If the IOMMU triggers a hardware error (master abort, target abort, poisoned data, etc.) while access-
ing the Device Table, the IOMMU writes the event log with a DEV_TAB_HARDWARE_ERROR
event (see Table 45). In this case the Address field does not contain the DVA the device was attempt-
ing to access, but instead contains the system physical address of the failed Device Table access.
Information on the hardware error registers is contained in Section 2.5.16.2 [I/O Hardware Event
Reporting Registers].

15:0
+04

D/P[15:0]: DomainID/PASID[15:0]. When guest translation / PASID is not supported, this
field contains the DomainID from the Device Table Entry. For error conditions that lack a
valid DomainID, the reported DomainID is zero. When guest translation / PASID is sup-
ported, this field contains the guest PASID[15:0] from the PASID TLP prefix when GN=1
(see also PASID[19:0] above); the DomainID from the DTE when GN=0. For error condi-
tions that lack a valid PASID or DomainID, the reported value is zero.

31:0
+08

Address[31:0]. The Address field contains the DVA that the peripheral was attempting to
access.

31:0
+12

Address[63:32]. The Address field contains the DVA that the peripheral was attempting to
access.

Table 58: Event Log Type Field Encodings

Type Description

00b Invalid COMPLETION_WAIT store address in an SNP-enabled system

01b Master Abort

10b Target Abort

11b Data Error

Table 57: IO_PAGE_FAULT Event Log Buffer Entry Fields (Continued)

Bits Description

[AMD Public Use]

Architecture 155

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 57: DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 4 3 0

V
C

m
d

V
P

pr

V
E

ve
nt

R
S

V
D

V
N

R
Reserved DeviceID[15:0] +00

0011b Res Type TR Res RWRes I Reserved +04

Address[31:4] Reserved +08

Address[63:32] +12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 4 3 0

V
C

m
d

V
P

pr

V
E

ve
nt

R
S

V
D

V
N

R

Reserved DeviceID[15:0] +00

0011b Res Type TR Res RWRes I Reserved +04

Address[31:4] Reserved +08

Address[63:32] +12

Table 59: DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry Fields

Bits Description

31
+00

VCmd. Virtualized Command Buffer. This event occurs during processing of the virtualized
command buffer. This bit is reserved and always 0 when vIOMMU feature is disabled.

30
+00

VPpr. Virtualized PPR Log. This event occurs during processing of the virtualized PPR log.
This bit is reserved and always 0 when vIOMMU feature is disabled.

29
+00

VEvent. Virtualized Event Log. This event occurs during processing of the virtualized event
log. This bit is reserved and always 0 when vIOMMU feature is disabled.

28
+00

Reserved

27
+00

VNR. vIOMMU Non-Recoverable.

0 = vIOMMU is fully operational.

1 = vIOMMU is corrupted and vIommu context need to be recreated.

This bit is reserved and always 0 when vIOMMU feature is disabled.

26:16
+00

Reserved.

15:0
+00

DeviceID. Specifies the DeviceID that caused the Device Table lookup. The address of the
Device Table entry can be determined using the DeviceID field.

31:28
+04

0011b. Specifies a DEV_TAB_HARDWARE_ERROR entry.

[AMD Public Use]

156 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.5.5 PAGE_TAB_HARDWARE_ERROR Event

If the IOMMU detects a hardware error (master abort, target abort, poisoned data, etc.) while access-
ing the I/O page tables, the IOMMU writes the event log with a PAGE_TAB_HARDWARE_ERROR
event (see Table 46). If the IOMMU detects a hardware error while accessing the guest CR3 table, the
guest page tables, or the I/O page tables, the IOMMU writes the event log with a
PAGE_TAB_HARDWARE_ERROR event (see Table 46). Data describing the PAGE_TAB_HARD-
WARE_ERROR event is also written to the hardware error registers (see in Section 2.5.16.2 [I/O
Hardware Event Reporting Registers]).

27
+04

Reserved.

26:25
+04

Type. The Type field indicates the type of hardware error that occurred as listed in Table 58.

24
+04

TR: translation. 1=transaction that caused the Device Table lookup was a translation
request. 0=transaction that caused the Device Table lookup was a transaction request.

23:22
+04

Reserved.

21
+04

RW: read-write. 1=transaction was a write. 0=transaction was a read. RW is only meaning-
ful when TR=0 and I=0.

20
+04

Reserved.

19
+04

I: interrupt. 1=transaction was an interrupt request. 0=transaction was a memory request.

18:0
+04

Reserved.

31:4
+08

Address[31:4]. The system physical address of the failed Device Table access. In this case
the Address field does not contain the DVA the device was attempting to access.

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The system physical address of the failed Device Table access. In this case
the Address field does not contain the DVA the device was attempting to access.

Table 59: DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry Fields (Continued)

Bits Description

[AMD Public Use]

Architecture 157

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 58: PAGE_TAB_HARDWARE_ERROR Event Log Buffer Entry Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 3 2 0

V
C

m
d

V
Pp

r

V
E

ve
nt

R
es

er
ve

d

V
N

R

Reserved DeviceID[15:0] +00

0100b

R
es

er
ve

d

Type TR

R
es

er
ve

d

RW

R
es

er
ve

d

I

R
es

er
ve

d

GN D/P[15:0] +04

Address[31:3] Reserved +08

Address[63:32] +12

Table 60: PAGE_TAB_HARDWARE_ERROR Event Log Buffer Entry Fields

Bits Description

31
+00

VCmd. Virtualized Command Buffer. This event occurs during processing of the virtualized
command buffer. This bit is reserved and always 0 when vIOMMU feature is disabled.

30
+00

VPpr. Virtualized PPR Log. This event occurs during processing of the virtualized PPR log.
This bit is reserved and always 0 when vIOMMU feature is disabled.

29
+00

VEvent. Virtualized Event Log. This event occurs during processing of the virtualized event
log. This bit is reserved and always 0 when vIOMMU feature is disabled.

28
+00

Reserved.

27
+00

VNR. vIOMMU Non-Recoverable. 0 - vIOMMU is fully operational. 1 - vIOMMU is cor-
rupted and vIommu context need to be recreated. This bit is reserved and always 0 when
vIOMMU feature is disabled.

26:16
+00

Reserved.

15:0
+00

DeviceID. Specifies the DeviceID that caused the page table lookup. The address of the
Device Table entry can be determined using the DeviceID field.

31:28
+04

0100b. Specifies a PAGE_TAB_HARDWARE_ERROR entry.

27
+04

Reserved.

26:25
+04

Type. The Type field indicates the type of hardware error that occurred as listed in Table 58.

24
+04

TR: translation. 1=transaction that caused the page table lookup was a translation request.
0=transaction that caused the page table lookup was an untranslated request.

23:22
+04

Reserved.

[AMD Public Use]

158 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Software Note: When GN=1, the problem may be in the GCR3 table or in the guest page tables.

2.5.6 ILLEGAL_COMMAND_ERROR Event

If the IOMMU reads an invalid command (including an unsupported command code, or a command
that incorrectly has reserved bits set), the IOMMU writes the event log with an ILLEGAL_COM-
MAND_ERROR event (see Table 48). The IOMMU must stop fetching new commands from the

21
+04

RW: read-write. 1=transaction was a write. 0=transaction was a read. RW is only meaning-
ful when TR=0 and I=0.

20
+04

Reserved.

19
+04

I: interrupt. 1=transaction was an interrupt request. 0=transaction was a memory request.

18:17
+04

Reserved.

16
+04

GN: guest/nested. 0=The address being translated by the IOMMU is an SPA. 1=The
address being translated by the IOMMU is a GPA. Must be zero when MMIO Offset
0030h[GTSup]=0.
Software Note: when GN=1, the error could have been encountered in either the guest CR3
table or in the guest page tables.

15:0
+04

D/P: DomainID/PASID. When guest translation / PASID is not supported, this field con-
tains the DomainID of the peripheral that caused the page table lookup. When guest transla-
tion / PASID is supported, this field contains the PASID when GN=1; the DomainID when
GN=0.

31:4
+08

Address[31:4]. The address of the page table entry.

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The SPA of the page table entry. The original address space used by the
peripheral is indicated by DeviceID, GN, and PASID. The Address field does not contain the
address that the device attempted to access.

Table 60: PAGE_TAB_HARDWARE_ERROR Event Log Buffer Entry Fields(Continued)

Bits Description

[AMD Public Use]

Architecture 159

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

command buffer if an ILLEGAL_COMMAND_ERROR event is detected.

2.5.7 COMMAND_HARDWARE_ERROR Event
If the IOMMU detects a hardware error (master abort, target abort, poisoned data, etc.) while access-
ing the command buffer, the IOMMU writes the event log with a COMMAND_HARDWARE_ER-
ROR event (see Table 47). The IOMMU must stop fetching new commands from the command
buffer if a COMMAND_HARDWARE_ERROR event is detected.

Data describing the COMMAND_HARDWARE_ERROR event is also written to the hardware error
registers (see Section 2.5.16.2 [I/O Hardware Event Reporting Registers]).

Figure 60: COMMAND_HARDWARE_ERROR Event Log Buffer Entry Format

31 28 27 4 3 0

Reserved +00

0101b Reserved +04

Address[31:4] Reserved +08

Address[63:32] +12

Figure 59: ILLEGAL_COMMAND_ERROR Event Log Buffer Entry Format

Table 61: ILLEGAL_COMMAND_ERROR Event Log Buffer Entry Fields

Bits Description

31:0
+00

Reserved.

31:28
+04

0101b. Specifies an ILLEGAL_COMMAND_ERROR entry.

27:0
+04

Reserved.

31:4
+08

Address[31:4]. The system physical address of the invalid command.

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The system physical address of the invalid command.

31 28 27 26 25 4 3 0

Reserved +00

0110b

R
E

S

Type Reserved +04

Address[31:4] Reserved +08

Address[63:32] +12

[AMD Public Use]

160 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.5.8 IOTLB_INV_TIMEOUT Event

If the IOMMU sends an invalidation request to a device and does not receive a response before the
invalidation timeout timer expires, the IOMMU writes the event log with a IOTLB_INV_TIMEOUT
event (see Table 49). See special considerations in Section 2.1.4.13 [INVALIDATE_IOTLB_PAGES
and Peripheral Reset].

The Address field contains the system physical address of the invalidation command that timed out.

Figure 61: IOTLB_INV_TIMEOUT Event Log Buffer Entry Format

Table 62: COMMAND_HARDWARE_ERROR Event Log Buffer Entry Fields

Bits Description

31:0
+00

Reserved.

31:28
+04

0110b. Specifies a COMMAND_HARDWARE_ERROR entry.

27
+04

Reserved.

26:25
+04

Type. The Type field indicates the type of hardware event that occurred as listed in Table 58.

24:0
+04

Reserved.

31:4
+08

Address[31:4]. The system physical address that the IOMMU attempted to access.
This field is only valid if SR=0.

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The system physical address that the IOMMU attempted to access.
This field is only valid if SR=0.

31 28 27 16 15 4 3 0

Reserved DeviceID[15:0] +00

0111b Reserved +04

Address[31:4] Reserved +08

Address[63:32] +12

[AMD Public Use]

Architecture 161

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.5.9 INVALID_DEVICE_REQUEST Event

If the IOMMU receives a request from a device that the device is not allowed to perform, the
IOMMU writes the event log with a INVALID_DEVICE_REQUEST event (see Table 50). Creation
of event log entries for INVALID_DEVICE_REQUEST events is controlled by the IG bit in the
Device Table entry (Figure 7 and Table 7). Depending on the type of the INVALID_DEVICE_RE-
QUEST (Table 64), some of the fields in Figure 62 and Table 65 will not be meaningful.

Table 63: IOTLB_INV_TIMEOUT Event Log Buffer Entry Fields

Bits Description

31:16
+00

Reserved.

15:0
+00

DeviceID. Specifies the DeviceID that caused the invalidation timeout. The identity of the
device causing the error can be determined using the DeviceID field.

31:28
+04

0111b. Specifies a IOTLB_INV_TIMEOUT entry.

27:0
+04

Reserved.

31:4
+08

Address[31:4]. The system physical address of the invalidation command that timed out.

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The system physical address of the invalidation command that timed out.

Table 64: INVALID_DEVICE_REQUEST Type Field Encodings

Type TR Description

000b 0b Read request or non-posted write in the interrupt address range (see Table 3).

001b 0b
Pretranslated transaction received from an I/O device that has I=0 or V=0 in the device’s
DTE.

010b 0b
Port I/O space transaction received from an I/O device that has IoCtl=00b in the device’s
DTE.

011b 0b
Posted write to the system management address range received from an I/O device that has
SysMgt=00b, or with SysMgt=10b and the message is not a INTx message in the device’s
DTE, or a posted write to the address translation range when HtAtsResv=1 (see Table 3).

100b 0b

When guest translation / PASID are not supported, read request or non-posted write in the
system management address range (if SysMgt=10b or 0xb), or a read request or a non-
posted write in the address translation range when HtAtsResv=1 (see Table 3); GN=1 for
these errors and PASID is ignored. Also, a transaction in any address range with a TLP pre-
fix when guest translation is not supported or not active for the I/O device (see Table 5);
note that GN=1 for these errors and PASID is valid.

[AMD Public Use]

162 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Figure 62: INVALID_DEVICE_REQUEST Event Log Buffer Entry Format

101b 0b
Posted write to the Interrupt/EOI range from an I/O device that has IntCtl=00b in the
device’s DTE (see Table 3).

110b 0b Posted write to a reserved interrupt address range (see Table 3).

111b 0b
Transaction to the system management address range when SysMgt=11b or to the
port I/O space range when IoCtl=10b, while V=1 and TV=0.

000b 1b

Translation request received from an I/O device that has I=0, or has V=0, or has V=1 and
TV=0 in the device’s DTE. This encoding is also used when a translation requests is
received with a virtual address in the address translation range and HtAtsResv=1 to use
encoding of Type=001b with TR=1b instead of Type=000b with TR=1b.

001b 1b

Translation request in the interrupt, port I/O space (if IoCtl=0xb), or system management
address range (if SysMgt=0xb or 10b); or translation request in the system management
address range when SysMgt=11b or in the port I/O space range when IoCtl=10b, while
V=1 and TV=0.

010b 1b
When PASID is supported, a translation request for any address with a TLP prefix when
guest translation is not supported or not active for the I/O device (see Table 5); note that
GN=1 for these errors and PASID is valid.

011b-111b 1b Reserved.

31 28 27 25 24 23 20 19 18 17 16 15 0

Reserved PASID[19:16] DeviceID[15:0] +00

1000b Type TR Reserved US GN PASID[15:0] +04

Address[31:0] +08

Address[63:32] +12

Table 65: INVALID_DEVICE_REQUEST Event Log Buffer Entry Fields

Bits Description

31:16
+00

PASID[19:16]: process address space ID. When guest translation / PASID feature is sup-
ported, this field contains PASID[19:16] when GN=1; 0h when GN=0.

15:0
+00

DeviceID. Specifies the DeviceID that caused the page table lookup. The address of the
Device Table entry can be determined using the DeviceID field.

31:28
+04

1000b. Specifies an INVALID_DEVICE_REQUEST entry.

27:25
+04

Type. The Type field indicates the type of hardware event that occurred as listed in Table 64.

24
+04

TR: translation. 1=transaction that caused the page table lookup was a translation request.
0=transaction that caused the page table lookup was a transaction request. See Table 64.

Table 64: INVALID_DEVICE_REQUEST Type Field Encodings (Continued)

Type TR Description

[AMD Public Use]

Architecture 163

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.5.10 INVALID_PPR_REQUEST Event

When supported, an INVALID_PPR_REQUEST event log entry is generated when the peripheral
page request or the completion command has a problem (see Table 52).

When Capability Offset 00h[EFRSup]=0 or MMIO Offset 0030h[PPRSup]=0, the PCIe page request
interface (PRI) is not supported by an IOMMU implementation and a COMPLETE_PPR_REQUEST
command will cause an ILLEGAL_COMMAND_ERROR event. When PRI is supported (MMIO
Offset 0030h[PPRSup]=1), a PRI request from a peripheral is invalid when MMIO Offset
0018h[PPREn]=0 or MMIO Offset 0018h[PPRLogEn]=0. An individual peripheral is not enabled for
PRI when Capability Offset 0030h[EPHSup]=1 and DTE[PPR]=0.

When the IOMMU receives an invalid PPR request from a peripheral, it writes the event log with an
INVALID_PPR_REQUEST event containing RX=0. For certain error conditions noted in Table 52,
the IOMMU also target aborts the transaction. The IOMMU continues processing normally. Software
is responsible to issue any COMPLETE_PPR_REQUEST command required by the peripheral. The
values in the INVALID_PPR_REQUEST event log entry are obtained from the peripheral page
request when RX=0.

When the IOMMU detects an error while processing a COMPLETE_PPR_REQUEST command, the
IOMMU writes the event log with an INVALID_PPR_REQUEST event containing RX = 1. The

23:18
+04

Reserved.

17 US: user-supervisor. 0=Supervisor privileges were asserted. 1=User privileges were
asserted.

16
+04

GN: guest/nested. 0=Address is a GPA. 1=Address is a GVA.

15:0
+04

PASID[15:0]: Process address space ID. The PASID when GN=1; 0000h when GN=0.

31:0
+08

Address[31:0]. The address that the device attempted to translate or access. See GN.

31:0
+12

Address[63:32]. The address that the device attempted to translate or access. See GN.

31 28 27 26 25 24 22 21 20 19 18 17 16 15 14 13 12 11 10 9 0

PASID[15:0] DeviceID[15:0] +00

1001b Rsvd GN Rsvd US WP Rsvd RP NX
RX
=0

Rsvd PASID[19:16] PPRtag[9:0] +04

Address[31:12] Reserved +08

Address[63:32] +12

Figure 63: INVALID_PPR_REQUEST Event Log Buffer Entry Format, RX = 0

Table 65: INVALID_DEVICE_REQUEST Event Log Buffer Entry Fields (Continued)

Bits Description

[AMD Public Use]

164 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

DeviceID and PPRtag fields are extracted from the failed COMPLETE_PPR_REQUEST command
and the address of the COMPLETE_PPR_REQUEST command is reported in Address[63:0]. When
RX = 1, the contents of the WP, RP, and NX fields are undefined and should be ignored by software.

31 28 27 26 25 24 22 21 20 19 18 17 16 15 14 13 10 9 4 3 0

PASID[15:0] DeviceID[15:0] +00

1001b Rsvd GN Rsvd
RX
=1

Rsvd PASID[19:16] PPRtag[9:0] +04

Address[31:4] Reserved +08

Address[63:32] +12

Figure 64: INVALID_PPR_REQUEST Event Log Buffer Entry Format, RX = 1

Table 66: INVALID_PPR_REQUEST Event Log Buffer Entry Fields

Bits Description, RX=0 Description, RX=1

31:16
+00

PASID[15:0]. Meaningful if GN=1; must be zero if GN=0.

15:0
+00

DeviceID[15:0]. DeviceID of the peripheral
issuing the invalid PPR request.

DeviceID[15:0]. DeviceID of the target
peripheral (see Section 2.4.7
[COMPLETE_PPR_REQUEST]).

31:28
+04

1001b. Specifies an INVALID_PPR_REQUEST entry.

27:26
+04

Reserved.

25
+04

GN: guest/nested. 0=Address is a GPA and PASID is not meaningful. 1=Address is a GVA and
PASID contains the process address space ID.

24:23
+04

Reserved

22
+04

US. User/supervisor bit as received from the
peripheral. See PMR in Table 33.

Reserved.

21
+04

WP. Write permission request bit as received
from the peripheral.

Reserved.

20:19
+04

Reserved.

18
+04

RP. Read permission request bit as received from
the peripheral.

Reserved.

17
+04

NX. No-execute permission request bit as
received from the peripheral. See Exe in Table 33

Reserved.

16
+04

RX. 0=Invalid PAGE_SERVICE_REQUEST
received (see Section 2.6.3 [Peripheral Page
Request Entry]).

RX. 1=COMPLETE_PPR_REQUEST failed (see
Section 2.4.7 [COMPLETE_PPR_REQUEST]).

[AMD Public Use]

Architecture 165

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Software Note: Software is responsible to take the PCI PRG index from the PPRtag field and use it in the PPR completion
command (see Section 2.4.7 [COMPLETE_PPR_REQUEST]).

2.5.11 EVENT_COUNTER_ZERO Event

When the IOMMU is programmed to count events and a counter increments to become equal to zero,
the IOMMU generates an EVENT_COUNTER_ZERO event. The CounterNote field contains the
CounterNote value programmed into the corresponding event register (see IOMMU Counter Report
Register [MMIO Offset [40-7F][0-F]28h]). The EVENT_COUNTER_ZERO event log entry is man-
aged by the same controls as other events (see MMIO Offset 0010h[MsiNum] and MMIO Offset
0018h[EventIntEn, EventLogEn]).

Figure 65: EVENT_COUNTER_ZERO Event Log Buffer Entry Format

15:14
+04

Reserved.

13:10
+04

PASID[19:16]. Meaningful if GN=1; must be zero if GN=0.

9:0
+04

PPRtag[9:0]. The PPRtag field as received from
the peripheral. This field contains a protocol-
dependent tag.
When the PPR request originated as a PCIe page
request message, PPRtag[9] is the L bit and
PPRtag[8:0] is the PRG index.

PPRtag[9:0]. The PPRtag field as sent to the
peripheral. This field contains a protocol-
dependent tag.
When the PPR completion targets a PCIe
peripheral, PPRtag[9] is the L bit and
PPRtag[8:0] is the PRG index.
The PRI Response Code in is not reported (see
Table 40).

31:12
+08

Address[31:12]. The page address as received
from the peripheral.

Address[31:4]. The SPA of the invalid PPR
completion command.

11:4
+08

Reserved.

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The page address as received
from the peripheral.

Address[63:32]. The SPA of the invalid PPR
completion command.

31 28 27 20 19 0

Reserved +00

1010b Reserved +04

Reserved CounterNote[51:32] +08

CounterNote[31:0] +12

Table 66: INVALID_PPR_REQUEST Event Log Buffer Entry Fields (Continued)

Bits Description, RX=0 Description, RX=1

[AMD Public Use]

166 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.5.12 GUEST_EVENT_FAULT Event

When INSERT_GUEST_EVENT is supported, IOMMU generates a GUEST_EVENT_FAULT event
when the reserved bits in the INSERT_GUEST_EVENT command are not zero. GUEST_EVENT_-
FAULT event is always written in pairs with a guest event entry immediately after it into the event
log, which takes up two event log entries. The guest event entry is taken from the original guest event
which pair with the INSERT_GUEST_EVENT.

Figure 66: GUEST_EVENT_FAULT Event Buffer Entry Format

Table 67: EVENT_COUNTER_ZERO Event Log Buffer Entry Fields

Bits Description

31:00
+00

Reserved.

31:28
+04

1010b. Specifies a EVENT_COUNTER_ZERO entry.

27:0
+04

Reserved.

31:20
+08

Reserved.

19:0
+08

CounterNote[51:0]. The CounterNote value programmed into the corresponding Event Counter
Register (see IOMMU Counter Report Register [MMIO Offset [40-7F][0-F]28h]).

31:0
+12

Table 68: Guest_Event_Fault Event Log Buffer Entry Fields

Bits Description

31:0
+00

Reserved.

31:28
+04

1011b. Specifies a GUEST_EVENT_FAULT entry.

27:17
+04

Reserved.

Reserved

31 0

+00

Reserved

Reserved

28 27 1516

+041011b Reserved GuestID[15:0]

+08

+12

RZ

16

17

[AMD Public Use]

Architecture 167

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.5.13 VIOMMU_HARDWARE_ERROR Event

If the IOMMU detects a hardware error (master abort, target abort, poisoned data, etc) while access-
ing its private memory, the IOMMU writes the event log with a VIOMMU_HARDWARE_ERROR
event.

SW Note: When the vIOMMU faults, HV can communicate to Guest via other channel, OR, HV may
utilize the VIOMMU_HARDWARE_ERROR command to communicate to the guest which
part of vIOMMU is not working properly by inject the command into the guest event log.
Src, GuestID, Type, RW fields should be treated as reserved when a VIOMMU_HARD-
WARE_ERROR command is injected into the guest.

Figure 67: VIOMMU_HARDWARE_ERROR Event Entry Format

16:
+04

RZ. Reserved bits not zero. 1=This event is caused by a non-zero reserved bit in he
INSERT_GUEST_EVENT command.

15:0
+04

GuestID. The 16 bit value which the host software assign to the guest.

31:0
+08

Reserved.

31:0
+12

Reserved.

31 30 28 27 26 25 24 22 21 20 19 18 17 16 15 2 1 0

V
C

m
d

V
P

pr

V
E

ve
nt

R
S

V
D

V
N

R

Reserved SRC Guest ID +00

1100b

R
S

V
D

Type Reserved RW Rst I Reserved +04

Address[31:2]

R
S

V
D

Vld+08

Address[63:32] +12

Table 69: VIOMMU_HARDWARE_ERROR Event Entry Fields

Bits Description

31
+00

VCmd. Virtualized Command Buffer. This event occurs during processing of the virtualized
command buffer. This bit is reserved and always 0 when vIOMMU feature is disabled.

30
+00

VPpr. Virtualized PPR Log. This event occurs during processing of the virtualized PPR log. This bit
is reserved and always 0 when vIOMMU feature is disabled.

29
+00

VEvent. Virtualized Event Log. This event occurs during processing of the virtualized event log.
This bit is reserved and always 0 when vIOMMU feature is disabled.

28
+00

Reserved.

Table 68: Guest_Event_Fault Event Log Buffer Entry Fields (Continued)

Bits Description

[AMD Public Use]

168 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.5.14 RMP_PAGE_FAULT Event

In an SNP-enabled system, the IOMMU reads the RMP table to perform addition security checks. If
the IOMMU encounters an error condition as part of doing the RMP checks, the IOMMU writes the
event log with an RMP_PAGE_FAULT event.

27
+00

VNR. vIOMMU Non-Recoverable. 0= vIOMMU is fully operational. 1= vIOMMU is corrupted
and vIommu context need to be recreated. This bit is reserved and always 0 when vIOMMU feature
is disabled.

26:18
+00

Reserved.

17:16
+00

Src. Source.
00 – an hardware error is detected while accessing the vIOMMU MMIO registers
01 – an hardware error is detected while accessing the DeviceID Table
10 – an hardware error is detected while accessing the DomainID Table
11 – an hardware error is detected while accessing other IOMMU Private Memory.

15:0
+00

GuestID. the 16 bit value which the host software assign to the guest.

31:28
+04

1100b. Specifies a VIOMMU_HARDWARE_ERROR entry.

26:25
+04

Type. The Type field indicates the type of hardware error that occurred as listed in Table 51.

24:22
+04

Reserved.

21
+04

RW. read-write.
1=transaction was a write. 0=transaction was a read. RW is only meaningful I=0.

20
+04

Rst. 1 – this hardware error is occur during processing a RESET_VMMIO Command from the host
command buffer log.

19
+04

I. interrupt. 1=transaction was an interrupt request. 0=transaction was a memory request.

18:0
+04

Reserved.

31:2
+08

Address[31:2]. The system physical address accessed by vIOMMU hardware.

1
+08

Reserved.

0
+08

Vld. Valid Address. 1 - Address[63:2] field is being used in the event and the content is valid. 0 -
The Address[63:2] field is not being used in the event.

31:0
+12

Address[63:32]. The system physical address accessed by vIOMMU hardware.

Table 69: VIOMMU_HARDWARE_ERROR Event Entry Fields (Continued)

Bits Description

[AMD Public Use]

Architecture 169

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 68: RMP_PAGE_FAULT Event Log Buffer Entry Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0

V
C

m
d

V
P

pr

V
E

ve
nt

R
S

V
D

V
N

R
Reserved Flags DeviceID[15:0] +00

1101b Reserved TR RSVD RW RSVD US NX

R
S

V
D

Reserved +04

Address[31:0] +08

Address[63:32] +12

Table 70: RMP_PAGE_FAULT Event Log Buffer Entry Fields

Bits Description

31
+00

VCmd. Virtualized Command Buffer. This event occurs during processing of the virtualized
command buffer. This bit is reserved when the vIOMMU feature is disabled.

30
+00

VPpr. Virtualized PPR Log. This event occurs during processing of the virtualized PPR log. This
bit is reserved when the vIOMMU feature is disabled.

29
+00

VEvent. Virtualized Event Log. This event occurs during processing of the virtualized event log.
This bit is reserved when the vIOMMU feature is disabled.

28
+00

Reserved

27
+00

VNR. vIOMMU Non-Recoverable.
0= vIOMMU is fully operational.
1= vIOMMU is corrupted and vIOMMU context must be recreated.
This bit is reserved and always 0 when vIOMMU feature is disabled.

26:24
+00

Reserved

23:16
+00

Flags: One-hot indicator of all the RMP checks that failed.
Flags[7] = Reserved
Flags[6] = Reserved
Flags[5] = PAGE_IMMUTABLE
Flags[4] = Reserved
Flags[3] = PAGE_LOCKED
Flags[2] = PAGE_SIZE_MISMATCH
Flags[1] = ASID_MISMATCH
Flags[0] = Reserved

15:0
+00

DeviceID. Specifies the DeviceID of the request that caused the RMP lookup.

31:28
+04

1101b. Specifies an RMP_PAGE_FAULT entry.

27:25
+04

Reserved

[AMD Public Use]

170 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.5.15 RMP_HARDWARE_ERROR Event

In an SNP-enabled system, if the IOMMU detects a hardware error (master abort, target abort, poi-
soned data, etc.) while accessing the RMP, the IOMMU writes an event log entry with RMP_HARD-
WARE_ERROR event. See Figure 69.

24
+04

TR: translation.
1=Transaction that caused the RMP lookup was a translation request.
0=Transaction that caused the RMP lookup was a transaction request.

23:22
+04

Reserved

21
+04

RW: read-write.
1=Transaction was a write.
0=transaction was a read.
RW is only meaningful when TR=0.

20
+04

Reserved

19
+04

Reserved

18
+04

US: user-supervisor.
0=Supervisor privileges were asserted.
1=User privileges were asserted.

17
+04

NX: no execute. NX bit as requested by peripheral when the upstream transaction has a PASID
TLP prefix; 0 when the upstream transaction lacks a PASID TLP prefix.

16
+04

Reserved

15:0
+04

Reserved

31:0
+08

Address[31:0]. The Guest Physical address of the memory access that failed the RMP check.

31:0
+12

Address[63:32]. The Guest Physical address of the memory access that failed the RMP check.

Table 70: RMP_PAGE_FAULT Event Log Buffer Entry Fields (Continued)

Bits Description

[AMD Public Use]

Architecture 171

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 69: RMP_HARDWARE_ERROR Event Log Buffer Entry Format

31 30 29 28 27 26 25 24 23 22 21 16 15 0

V
C

m
d

V
P

pr

V
E

ve
nt

R
S

V
D

V
N

R
Reserved DeviceID[15:0] +00

1110b

R
S

V
D

Type TR RSVD RW Reserved GN Reserved +04

Address[31:3] Reserved +08

Address[63:32] +12

Table 71: RMP_HARDWARE_ERROR Event Log Buffer Entry Fields

Bits Description

31
+00

VCmd. Virtualized Command Buffer. This event occurs during processing of the virtualized
command buffer. This bit is reserved when the vIOMMU feature is disabled.

30
+00

VPpr. Virtualized PPR Log. This event occurs during processing of the virtualized PPR log. This
bit is reserved when the vIOMMU feature is disabled.

29
+00

VEvent. Virtualized Event Log. This event occurs during processing of the virtualized event log.
This bit is reserved when the vIOMMU feature is disabled.

28
+00

Reserved

27
+00

VNR. vIOMMU Non-Recoverable. 0= vIOMMU is fully operational. 1= vIOMMU is corrupted
and vIOMMU context need to be recreated. This bit is reserved when the vIOMMU feature is
disabled.

26:16
+00

Reserved

15:0
+00

DeviceID. Specifies the DeviceID of the request that caused the RMP lookup.

31:28
+04

1110b. Specifies an RMP_HARDWARE_ERROR entry.

27
+04

Reserved

26:25
+04

Type. Indicates the type of hardware error that occurred as listed in Table 58 on page 154.

24
+04

TR: translation.
1=Transaction that caused the RMP lookup was a translation request.
0=Transaction that caused the RMP lookup was a transaction request.

23:22
+04

Reserved

21
+04

RW: read-write.
1=Transaction was a write.
0=Transaction was a read. RW is only meaningful when TR=0

[AMD Public Use]

172 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.5.16 IOMMU Event Reporting

The IOMMU is designed to identify and report hardware events, software programming problems,
completion events, and performance events. Hardware events are the highest priority, programming
problems are reported when there are no hardware events detected, and completion and performance
events are reported as soon as possible. The IOMMU reports one event for a given activity; because
the IOMMU can be highly concurrent, multiple events may be reported in quick succession from dif-
ferent causes. The IOMMU checks for exceptions in a sequence designed to protect system integrity
and described in Section 2.5.16.1 [IOMMU Data Validation Sequence].

Hardware events could prevent reporting events via the event log in memory and are reported in
IOMMU registers (Section 2.5.16.2 [I/O Hardware Event Reporting Registers]).

2.5.16.1 IOMMU Data Validation Sequence

When the IOMMU processes an interrupt remapping or address translation operation, it follows the
data validation sequence in Figure 65. The order of reported events can vary based on the nature of
the events and cached information. In the case of multiple events, the IOMMU is only required to
report a single event.

20:17
+04

Reserved

16
+04

GN: guest/nested.
0=Transaction contained a GPA.
1=Transaction contained a GVA. Must be zero when MMIO Offset 0030h[GTSup]=0.
Software Note: When GN=1, the error could have been encountered in either the guest CR3 table
or in the guest page tables.

15:0
+04

Reserved

31:3
+08

Address[31:3]. The system physical address of the failed RMP access.

2:0
+08

Reserved

31:0
+12

Address[63:32]. The system physical address of the failed RMP access.

Table 71: RMP_HARDWARE_ERROR Event Log Buffer Entry Fields (Continued)

Bits Description

[AMD Public Use]

Architecture 173

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 70: Translation and Remapping Validation Sequence

• Note A: These checks may run in parallel and an implementation selects any event to report when
it detects multiple events.

• Note B: INVALID_DEVICE_REQUEST and IO_PAGE_FAULT checks may run in parallel and
an implementation selects any detected event to report when it identifies multiple errors.

The IOMMU initially uses architectural definitions and information programmed in the registers to
validate the request (Table 3, Device Table Base Address Register [MMIO Offset 0000h], IOMMU
Control Register [MMIO Offset 0018h], IOMMU Exclusion Base Register / Completion Store Base
Register [MMIO Offset 0020h], IOMMU Exclusion Range Limit Register / Completion Store Limit
Register [MMIO Offset 0028h], and IOMMU Extended Feature Register [MMIO Offset 0030h]).

NO

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

Fetch DTE

DEV_TAB_HARDWARE_ERROR ?

ILLEGAL_DEV_TABLE_ENTRY?

Fetch
descriptor

PAGE_TAB_HARDWARE_ERROR?

IO_PAGE_FAULT?

Done?

Translation Done

Translation Start

Interlock A&D
bits

Update A&D?

PAGE_TAB_HARDWARE_ERROR?

Report event

INVALID_DEV_REQ?
IO_PAGE_FAULT?

INVALID_DEV_REQ?
IO_PAGE_FAULT?

Report event

Interrupt request?

Remappable?

Fetch IRTE

IO_PAGE_FAULT?

Note A

Note B

[AMD Public Use]

174 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Once the IOMMU has loaded a Device Table entry, it runs a series of checks. The IOMMU uses
architectural definitions to determine if the request requires interrupt remapping or address translation
(Table 3). For interrupt remapping, the DTE and IRTE are used with architectural definitions to check
for exceptions in sequence (Table 9 and Table 10). For address translation, the IOMMU fetches a
series of descriptors and checks for exceptions in sequence. After reporting an event, the IOMMU ter-
minates the translation process.

2.5.16.2 I/O Hardware Event Reporting Registers
Three types of event log entries are caused by memory faults:
• Section 2.5.4 [DEV_TAB_HARDWARE_ERROR Event],
• Section 2.5.5 [PAGE_TAB_HARDWARE_ERROR Event], and
• Section 2.5.7 [COMMAND_HARDWARE_ERROR Event].

When hardware event reporting is supported, hardware event information is written to the hardware
event registers by the IOMMU if MMIO Offset 0030h[HESup]=1. The event log information shown
in Figure 54 for the hardware events listed in this section is reported in IOMMU Hardware Event
Upper Register [MMIO Offset 0040h] and IOMMU Hardware Event Lower Register [MMIO Offset
0048h] where it can be extracted (e.g., for system diagnostic purposes when memory issues prevent
updates to the event log). When logging is enabled, the IOMMU also creates an event log entry.
When MMIO Offset 0018h[EventIntEn]=1, the IOMMU signals an interrupt. The hardware events
are reported in the hardware event registers even when event logging to memory is not enabled. The
information in the hardware event registers is meaningful when MMIO Offset 0050h[HEV]=1. The
information in the hardware event registers has overwritten prior information when MMIO Offset
0050h[HEO]=1. Hardware sets MMIO Offset 0050h[HEO]=1 if MMIO Offset 0050h[HEV]=1 when
the IOMMU writes new information to IOMMU Hardware Event Upper Register [MMIO Offset
0040h] and IOMMU Hardware Event Lower Register [MMIO Offset 0048h]. HEO is informational
and event register overflow does not, itself, cause an error. Software must clear HEV after reading the
hardware event registers to prepare the registers to record new information.

2.5.17 Event Log Dual Buffering

The optional Event Log dual buffering feature is designed to reduce the likelihood of Event Log over-
flow by allowing system software to set up an alternate buffer space for Event logging. When one log
fills, Event entries spill over to a second buffer area.

Support for the Event Log dual buffering feature is indicated by MMIO Offset
0030h[DualEventLogSup] > 0. When the dual log feature is supported, the base Event Log buffer is
also referred to as Event Log A.

The DualEventLogSup field encodes three levels of capability:

Table 72: DualEventLogSup Field Capability Levels

DualEventLogSup Capability

00b Dual buffering not supported

01b Dual buffer support; no auto swap

10b Dual buffer with auto swap supported

[AMD Public Use]

Architecture 175

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

The Event log dual buffer feature is enabled by setting MMIO Offset 0018h[DualEventLogEn] to a
non-zero value. This 2-bit field encodes three levels of operation:

It is an error to set DualEventLogEn to 10b if the IOMMU does not support autoswap.

The dual event log buffer feature defines three registers that allows system software to set up and
manage an alternate Event Log (Log B). These are:

• Event Log B Base Address Register [MMIO Offset 00F8h]
• Event Log B Head Pointer Register [MMIO Offset 2070h]
• Event Log B Tail Pointer Register [MMIO Offset 2078h]

See individual register definitions for information on the format of these registers.

Fields in the IOMMU Status Register [MMIO Offset 2020h] provide real-time information about
both logs. The EventLogActive field indicates which log is currently being filled. EventOvrflwB is
set by hardware when Log B overflows.

When auto swap is supported and enabled, logging behavior is modified:

When event logging is enabled, events are logged in Log A.

If Log A is active, an event occurs, there is no room in Log A to log the event, and Log B overflow bit
is not set, the log entry is added to Log B at the entry pointed by the Event Log B Tail pointer. Log A
overflow is set.

If Log B is active, an event occurs, there is no room in Log B to log the event, and Log A overflow bit
is not set, the log entry is added to Log A at the entry pointed by the Event Log Tail pointer. Log B
overflow is set.

Note: If the overflow bit of the log to be swapped to is set when a log swap is about to occur, an error
is logged.

2.6 Peripheral Page Request (PPR) Logging
Some ATS-capable peripherals can issue requests to the processor to service peripheral page requests
using PCIe PRI, the Page Request Interface (see the PCI Address Translation Services Revision 1.1
specification). An IOMMU that supports peripheral page requests (MMIO Offset 0030h[PPR-

11b Reserved.

Table 73: DualEventLogEn Field Operation Levels

DualEventLogEn Operation

00b Event logging uses buffer A exclusively.

01b Event logging uses buffer B exclusively.

10b Automatically swap buffers when one becomes full.

11b Reserved.

Table 72: DualEventLogSup Field Capability Levels (Continued)

DualEventLogSup Capability

[AMD Public Use]

176 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Sup]=1b) can report these requests to the host software by means of a shared circular buffer in system
memory. The IOMMU writes peripheral page request (PPR) records into the buffer when enabled by
MMIO Offset 0018h[PPREn]. The host software increments the IOMMU's PPR request log head
pointer to indicate to the IOMMU that it has consumed PPR request log entries. When software has
completed processing the PPR request, it uses the IOMMU COMPLETE_PPR_REQUEST command
to inform the peripheral of the results (see Section 2.4.7 [COMPLETE_PPR_REQUEST]).

Software Note: The IOMMU cannot service PRI requests without software intervention, so it con-
verts them to PPR log entries for software to process. All PRI requests are converted to PPR log
entries as long as there is room in the PPR log while MMIO Offset 0018h[PPRLogEn] = 1.
To stop the IOMMU from processing all PRI requests, software can program MMIO Offset
0018h[PPRLogEn] = 0; this causes PRI requests to be discarded by the IOMMU. To stop an individ-
ual peripheral from issuing PRI requests, software must use control fields in the peripheral registers.

Figure 71: Peripheral Page Request Log in System Memory

The PPR Log Base Address Register [MMIO Offset 0038h] is used to program the system physical
address and size of the PPR log. The PPR log occupies contiguous physical memory starting at the
programmed base address up to the programmed size. The size of the PPR log must be a multiple of
4 Kbytes (to facilitate “modulo N” indexing for circularity) and can be as large as 32768 entries (cor-
responding to a 512 kilobyte buffer). The base address of the PPR log must be aligned to a multiple of
4 Kbytes.

In addition to the PPR Log Base Address Register [MMIO Offset 0038h], the IOMMU maintains two
other registers associated with the PPR log: the IOMMU PPR Log Head Pointer Register [MMIO
Offset 2030h], which points to the next PPR request that software will read, and the IOMMU PPR
Log Tail Pointer Register [MMIO Offset 2038h], which points to the next PPR request to be written
by the IOMMU. These registers are located in MMIO space.

When the PPR Log Base Address Register [MMIO Offset 0038h] register is written, the IOMMU
PPR Log Head Pointer Register [MMIO Offset 2030h] and the IOMMU PPR Log Tail Pointer Regis-
ter [MMIO Offset 2038h] are cleared to 0. When the IOMMU PPR Log Head Pointer Register
[MMIO Offset 2030h] and the IOMMU PPR Log Tail Pointer Register [MMIO Offset 2038h] are
equal, the PPR request log is empty. The IOMMU PPR Log Tail Pointer Register [MMIO Offset
2038h] is incremented by the IOMMU after writing a PPR request to the log. If the IOMMU needs to

circular buffer of 128-bit event records (in system memory)

+112

+96

+80

+64

+48

+32

+16

+0

system software
(consumes requests)

IOMMU
(records peripheral page fault

requests)

tail pointer

write
s

head pointer

rea

ds

suggested variablesIOMMU registers

buffer address

buffer size

buffer address

buffer size

head pointer

[AMD Public Use]

Architecture 177

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

report a service request but finds that the PPR log is already full, it sets MMIO Offset
2020h[PprOverflow].

The IOMMU can be configured to signal an MSI interrupt by programming the Capability Offset
10h[MsiNumPPR]. When enabled by setting MMIO Offset 0018h[PprIntEn], the IOMMU can be
programmed to signal an interrupt whenever the PPR log is written or overflows. The PPR request log
is full when all slots but one are used. The PPR log has overflowed when a PPR request occurs that is
to be logged and would otherwise consume the last unused slot. When the PPR log has overflowed,
the MMIO Offset 2020h[PprOverflow] is set, any data for new PPR requests is discarded, and PPR
logging is disabled. The host software must make space in the PPR log by reading entries (by adjust-
ing the head pointer) or resizing the log. PPR request logging may then be restarted.

The PPR Log dual buffering feature described in the next section adds support for a second PPR Log.

2.6.1 PPR Log Dual Buffering

The optional PPR Log dual buffering feature is designed to reduce the likelihood of PPR Log over-
flow by allowing system software to set up an alternate buffer space for PPR logging. When one log
fills, PPR entries spill over to a second buffer area. Buffers can be managed as ping-pong buffers
using two fixed areas of memory, or a longer series of buffers can be maintained by allowing two
active buffers to leap-frog one another.

Support for the PPR Log dual buffering feature is indicated by MMIO Offset 0030h[DualPprLogSup]
> 0. When the dual log feature is supported, the base PPR log buffer is also referred to as PPR Log A.

The DualPprLogSup field encodes three levels of capability:

The PPR log dual buffer feature is enabled by setting MMIO Offset 0018h[DualPprLogEn] to a
non-zero value. This 2-bit field encodes three levels of operation:

It is an error to set DualPprLogEn to 10b if the IOMMU does not support autoswap.

The dual PPR log feature defines three registers that allow system software to set up and manage the
alternate PPR Log (Log B). These are:

DualPprLogSup Capability

00b Dual buffering not supported

01b Dual buffer support; no auto swap

10b Dual buffer with auto swap supported

11b Reserved.

DualPprLogEn Operation

00b PPR logging uses buffer A exclusively.

01b PPR logging uses buffer B exclusively.

10b Automatically swap buffers when one becomes full.

11b Reserved.

[AMD Public Use]

178 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

• PPR Log B Base Address Register [MMIO Offset 00F0h]
• PPR Log B Head Pointer Register [MMIO Offset 2050h]
• PPR Log B Tail Pointer Register [MMIO Offset 2058h]

See individual register definitions for information on the format of these registers.

Fields in the IOMMU Status Register [MMIO Offset 2020h] provide real-time information about
both logs. The PprLogActive field indicates which log is currently being filled. PprOvrflwB is set by
hardware when Log B overflows.

Note: If the overflow bit of the log to be swapped to is set when a log swap is about to occur, an error
is logged.

See Section 2.6.4 [PPR Log Overflow Protection] on page 181 for more information about autoswap
and other optional features that further reduce the likelihood of PPR Log overflow.

2.6.2 Peripheral Page Request Log Restart Procedure

The IOMMU PPR logging is disabled after system reset and when the PPR log overflows. The
IOMMU discards PPR requests until PPR logging is enabled, setting MMIO Offset 2020h[PprOver-
flow] to indicate the loss of PPR request information. To restart the IOMMU PPR request logging
after the PPR log overflows, use the following procedure.

• Wait until MMIO Offset 2020h[PPRLogRun]=0b so that all request entries are completed as
circumstances allow. PPRLogRun must be 0b to modify the PPR log registers safely.

• Write MMIO Offset 0018h[PPRLogEn]=0b.
• As necessary, change the following registers (e.g., to relocate or resize the PPR log):

• the PPR Log Base Address Register [MMIO Offset 0038h],
• the IOMMU PPR Log Head Pointer Register [MMIO Offset 2030h], and
• the IOMMU PPR Log Tail Pointer Register [MMIO Offset 2038h].

• Write MMIO Offset 2020h[PprOverflow] = 1b to clear the bit (W1C).
• Write MMIO Offset 0018h[PPRLogEn] = 1b, and either set MMIO Offset 0018h[PprIntEn] to

enable the Event log interrupt or clear the bit to disable it.

The IOMMU now creates PPR request log entries for new requests.

[AMD Public Use]

Architecture 179

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 72: PPR Log State Diagram

All PPR requests recorded by the IOMMU consist of a 4-bit PPRCode together with two operands,
which may be respectively 60 and 64 bits long, for a total of 128 bits (16 bytes) per record.

The IOMMU must set the Coherent bit in the HyperTransport™ packet when generating writes to the
PPR log.

Figure 73: Generic Peripheral Page Request Log Buffer Entry Format

2.6.3 Peripheral Page Request Entry

When a peripheral needs memory page services, it issues a special bus request to the IOMMU. If sup-
ported (see MMIO Offset 0030h[PPRSup] and MMIO Offset 0018h[PPREn]), the IOMMU converts
the special bus request to the PAGE_SERVICE_REQUEST format. When peripheral page service is

31 28 27 0

First event code dependent operand [31:0] +00

PPRCode[3:0] First event code dependent operand [59:32] +04

Second event code dependent operand [31:0] +08

Second event code dependent operand [63:32] +12

Set PPRLogEn = 0

[AMD Public Use]

180 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

enabled for the device (see MMIO Offset 0018h[PPRLogEn]), the IOMMU creates a PAGE_SER-
VICE_REQUEST entry in the PPR log buffer. Certain types of ill-formed PCIe PRI requests are
logged in the PPR request log with RZ=1 so that software may attempt recovery (e.g., reserved bit
error in Figure 41). When peripheral page request processing is not enabled, the IOMMU creates an
entry in the IOMMU event log to report the error (see Section 2.5.10 [INVALID_PPR_REQUEST
Event]). After processing the request, software issues a COMPLETE_PPR_REQUEST command to
inform the peripheral that page service processing is complete (see Section 2.4.7 [COMPLETE_P-
PR_REQUEST]).

If the PCIe PRI request has a PASID TLP prefix with a valid PASID, it is a GVA request and the
header contains a PASID. If the PRI request packet lacks a PASID TLP prefix with a valid PASID, it
is a nested (GPA) request and the PASID in the log entry must be ignored by software. The presence
of a valid PASID is indicated to software by the GN bit in the log entry.

Figure 74: PAGE_SERVICE_REQUEST PPR Log Buffer Entry Format

31 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 2 1 0

PASID[15:0] DeviceID[15:0] +00

0001b Reserved GN RZ US WP Resv RP NX Reserved PASID[19:16] PPRtag +04

Address[31:12] Reserved +08

Address[63:32] +12

Table 74: PAGE_SERVICE_REQUEST PPR Log Buffer Entry Fields

Bits Description

31:16
+00

PASID[15:0]. Specifies PASID[15:0] that requested the page service. PASID is valid when
GN=1 and is ignored by software when GN=0.

15:0
+00

DeviceID. Specifies the DeviceID that requested the page service. The IOMMU domain can
be determined using the DeviceID field. The page to be serviced can be determined from the
Address field.

31:28
+04

0001b. Specifies a PAGE_SERVICE_REQUEST from the peripheral identified in the Devi-
ceID field.

27:25
+04

Reserved.

24
+04

GN: Guest/nested. 1=Address[63:12] is a GVA and PASID is valid. 0=Address[63:12] is a
GPA and PASID should be ignored by software.

23
+04

RZ: reserved bit not zero or reserved encoding. 1=The received peripheral request had a
non-zero reserved bit or used a reserved encoding. The rest of the request has been reported
as it was received. Software may attempt recovery. 0=The received peripheral request
passed all hardware validation checks.

22
+04

US: User/Supervisor. The U/S request received from the peripheral. 1 = user level access
requested. 0 = supervisor access requested.

[AMD Public Use]

Architecture 181

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

The log entry is designed to carry a full set of independent read-, write-, and execute-permission bits;
any bits not provided by the underlying peripheral protocol are set to the “permitted” state by the
IOMMU (see also MMIO Offset 0030h[NXSup]).

2.6.4 PPR Log Overflow Protection

The architecture provides a number of optional features that drastically reduce the likelihood of a
PPR Log overflow. These features are:

• PPR Auto Response
• PPR Log Dual Buffering
• PPR Auto Response Always-on
• PPR Log Overflow Early Warning
• Block StopMark Messages

21
+04

WP: write permission requested. 1=peripheral is requesting write access. 0=write access
may be denied.

20:19
+04

Reserved.

18
+04

RP: read permission requested. 1=peripheral is requesting read access. 0=read access may
be denied.

17
+04

NX: execute permission requested. 0=peripheral instruction fetch access should be han-
dled as a read request. 1=peripheral is requesting NX handling of access requests (instruc-
tion fetch requests will be blocked, read requests are to be allowed when RP=1).

16:14
+04

Reserved.

13:10
+04

PASID[19:16]. Specifies PASID[19:16] that requested the page service. PASID is valid
when GN=1 and is ignored by software when GN=0.

9:0
+04

PPRtag: protocol tag. This field contains a protocol-dependent tag.
When the PPR request originated as a PCIe page request message, PPRtag[9] is the PRI L
bit and PPRtag[8:0] is the PRI PRG index; the IOMMU is required to return the PRG index
in the response message (see Section 2.4.7 [COMPLETE_PPR_REQUEST]).

31:12
+08

Address[31:12]. The address field contains the DVA that the device was attempting to
access. The minimum invalidation granularity is a 4-Kbyte page so the address is truncated.
See also GN and PASID fields.

11:0
+08

Reserved.

31:0
+12

Address[63:32]. The Address field contains the DVA that the device was attempting to
access. See also GN and PASID fields.

Table 74: PAGE_SERVICE_REQUEST PPR Log Buffer Entry Fields (Continued)

Bits Description

[AMD Public Use]

182 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.6.4.1 PPR Auto Response

The PPR auto response feature is supported when MMIO Offset 0030h[PprAutoRespSup] = 1. When
enabled (by setting MMIO Offset 0018h[PprAutoRspEn] to 1), the IOMMU starts generating auto-
matic PPR responses to the requesting I/O device when the currently active PPR log has reached an
PPR Log at limit state.

The IOMMU only generates responses for peripheral page requests with the L bit set in the original
request, with the exception of stop marker messages, which are dropped when there is no space in the
log. All other peripheral page requests (L = 0) are dropped without any response when the log is full.

When the auto response is enabled, system software does not need to manually restart PPR logging
when the log has reached an at limit state. The PPR log automatically recovers regular operation
when log entries are freed up.

The PPR auto response feature is not available in autoswap mode (MMIO Offset
0018h[DualPprLogEn = 10b).

The automatically generated PPR responses have “successful” completion code by default. This can
be changed by system software, if required, by programming the PprAutoRespCode field of the PPR
Log Overflow Early Indicator Register [MMIO Offset 2088h]. The PprAutoRespMskGn bit of the
same register can be used to eliminate the PASID field in all the PPR auto response.

Automatically generated PPR responses to PPR requests with PASID are returned with the same
PASID when DTE[GPRP]=1 otherwise PPR response is returned without a PASID.

Note: PPR auto response behavior is slightly different when enabled with PPR early overflow. This
behavior is described below.

2.6.4.2 PPR Log Dual Buffering

PPR Log dual buffering provides an alternate PPR Log (Log B) buffer space that can be programmed
to capture peripheral page requests when the default PPR Log (Log A) becomes full. PPR Log dual
bufferring is described in Section 2.6.1 [PPR Log Dual Buffering] on page 177.

2.6.4.3 PPR Log Overflow Early Indication

The PPR log early overflow indication feature helps prevent PPR Log overflow by providing a indi-
cation to system software when the number of free entries in a PPR Log has reached a programmable
threshold value. This feature is supported when MMIO Offset 0030h[PprOvrflwEarlySup] = 1.

The PPR Log overflow early warning feature defines two new registers:

• PPR Log Overflow Early Indicator Register [MMIO Offset 2088h] and
• PPR Log B Overflow Early Indicator Register [MMIO Offset 2090h]

The second register is only supported if the PPR Log dual buffering feature is supported.

The first register is used to set the threshold for the overflow early warning for the default PPR Log
(also known as PPR Log A when PPR log dual buffering is supported and enabled). The second reg-
ister is used to set the threshold for the overflow early warning for PPR Log B.

The IOMMU can be programmed to generate an MSI interrupt when the number of free entries in the
PPR Log A drops below the threshold specified by MMIO Offset 2088h[PprOvrflwEarlyThreshold]

[AMD Public Use]

Architecture 183

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

or when the number of free entries in the PPR Log B drops below the threshold specified by MMIO
Offset 2090h[PprOvrflwEarlyThreshold]. The PprOvrflwEarlyIntEn bit of the respective threshold
registers is used to enable the interrupt.

The PPR Log overflow early warning feature is not available in autoswap mode (MMIO Offset
0018h[DualPprLogEn = 10b).

The PPR logger behavior is slightly different when PPR auto response and early overflow are enabled
at the same time. The PPR logger generates an MSI interrupt when the number of free entries drops
below the specified threshold as usual. When number of free entries in the PPR logger falls below the
threshold, IOMMU begins to generated auto responses. Auto responses are generated for peripheral
page requests with L bit set and the rest are silently dropped.

PPR Stop marker messages are treated uniquely allowing them to be logged in the PPR Log even
when the number of free entries is below the threshold, unless Stop marker messages are set to be
dropped. The PPR logger resumes normal operation when system software has consumed entries
from the log and the free space is more than the threshold.

2.6.4.4 PPR Auto Response Always-on

The PPR auto response always-on feature builds on the auto response feature. When this feature is
enabled, the IOMMU returns auto responses for peripheral page requests all the time regardless the
PprOvrflwEarlyThreshold value. The feature is intended to eliminate an overflow of the PPRLOG
buffer, if software cannot process it in time.

The PPR auto response always-on feature is enabled when MMIO Offset 0018h[PprAutoRspAon] =
1. This feature requires that PPR Auto Response also be enabled. This feature should be turned on
(along with PPR auto response) whenever system software is dynamically relocating or resizing the
log.

The PPR auto response always-on feature is supported on all implementations that support the PPR
auto response feature.

2.6.4.5 Block StopMark Messages

The Block StopMark Messages feature provides the capability for the IOMMU to silently drop all the
stop marker messages without error. This feature includes an internal performance event counter to
count the number of stop marker messages that have been discarded since the counter was reset.

This feature is supported if MMIO Offset 0030h[BlkStopMrkSup] = 1. If supported, this feature is
enabled by default. To disable the feature, MMIO Offset 0018h[BlkStopMrkEn] should be set to 0.

2.7 Guest Virtual APIC (GA) Logging
An IOMMU that supports the guest virtual APIC feature (MMIO Offset 0030h[GASup] = 1) can
deliver interrupts directly to a running guest operating system in a virtual machine when used with an
AMD processor that supports the Advanced Virtual Interrupt Controller (AVIC) architecture. This
architecture defines the behavior and the system programming interface for the guest virtual APIC
(vAPIC). See the full description of AVIC in Chapter 15 of AMD64 Architecture Programmer’s Man-
ual, Volume 2: System Programming, order #24593.

[AMD Public Use]

184 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Guest vAPIC logging is used to record device interrupt requests that could not be immediately deliv-
ered to the target virtual processor due the fact the target was not running. When logging is enabled
and an interrupt request for a non-running virtual processor arrives from an I/O device, the IOMMU
creates an entry in the GALog. This entry records the Device ID of the requesting device and the
GATag of the target vAPIC. System software supplies the GATag by writing it in the appropriate
IRTE of the Interrupt Remap Table for the device.

2.7.1 Guest vAPIC Virtual Interrupt Request Log

The guest vAPIC virtual interrupt request log (GA Log) is diagrammed in Figure 75 below.

Figure 75: Guest vAPIC Log in System Memory

The GA Log is circular buffer in system physical memory that provides a queue of virtual interrupt
requests waiting to be delivered to their target virtual processors. These virtual interrupt requests
could not be delivered immediately due to the non-running state of the target virtual processor. Log
entries identify the source of the virtual interrupt request and the target virtual processor. The source
is identified using the Device ID of the device initiating the interrupt request. The target is recorded
using the GATag value assigned by system software.

When the IOMMU receives a virtual interrupt request from an I/O device it records the request by
updating the appropriate IRR bit of vAPIC backing page of the vAPIC associated with the target vir-
tual processor. If the target virtual processor is running at the time of the interrupt request, the
IOMMU completes the delivery of the interrupt by sending a doorbell interrupt to the physical pro-
cessor that is hosting the virtual processor.

If the target virtual processor is not running, delivery of the interrupt must be deferred. Instead of

Guest vAPIC Log entry

GALog Tail (copy)

Guest vAPIC Log entry

+0

+8

+ LogLen − 16

+ LogLen − 8

+ LogLen − 24

+ LogLen − 40

+ LogLen − 48

GALogHead

GALogBase

GALogTail

GATAddr

log base address

log size

head pointer

tail pointer address

SPA

SPA

(Offset)

(Offset)

(Offset)

IOMMU Registers Software Variables

IOMMU logs virtual interrupt
requests (when IsRun = 0)

IOMMU writes new log
entries at tail pointer

Software reads log
entries at head pointer

System Memory

+ LogLen − 32

IOMMU updates
copy in memory

[AMD Public Use]

Architecture 185

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

causing a doorbell interrupt, the IOMMU logs the details of the request in the GA Log. The virtual
interrupt remains pending until system software makes the targeted virtual processor active. When the
virtual processor is again active it acts on the interrupt request that the IOMMU has already set in the
IRR of the vAPIC backing page. System software utilizes information logged in the GALog to make
virtual processor scheduling decisions.

Guest virtual APIC event logging is enabled when MMIO Offset 0018h[GAEn] = 1, MMIO Offset
2020h[GALogRun] = 1, and IRTE[GALogIntr] = 1 (see Figure 18). The IRTE[IsRun] field indicates
whether or not the target virtual processor is running.

Figure 76: Guest Virtual APIC Log State Diagram

When logging a virtual interrupt request in the GA Log, the IOMMU writes the next available GA
Log entry. Assuming the log is not full, this is the entry pointed to by the GA Log tail pointer (MMIO
Offset 2048h[GALogTail]). After writing the new log entry, the IOMMU advances the GA Log tail
pointer and sets the MMIO Offset 2020h[GAInt] bit. If enabled via MMIO Offset 0018h[GAIntEn] =
1, the setting of the GAInt bit generates an message signalled interrupt using the MSI number speci-
fied by Capability Offset 14h[MsiNumGA].

To find the next entry to be processed, system software reads the GALog entry at the location pointed

1

Set GALogEn = 0

[AMD Public Use]

186 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

to by the GA Log head pointer and advances the head pointer to indicate that it has consumed the
entry. After it advances the head pointer, it compares the new value of the head pointer to the current
value of the tail pointer. (The IOMMU maintains a copy of its GA Log tail pointer in system memory
at the system physical memory location pointed to by MMIO Offset 00E8h.) If the new value of the
head pointer is equal to the tail pointer, there are no more entries in the log for system software to
consume. If head and tail pointers are not equal, this indicates there are more entries in the GA Log.

When done processing one or more GA Log entries, system software writes the new value of the head
pointer to the IOMMU head pointer register (MMIO Offset 2040h) to indicate to the IOMMU that the
consumed entries in the GA Log have been freed up. The IOMMU uses this value to determine if the
log is full. The GA Log is considered full if the tail pointer is pointing at the entry immediately below
the head pointer. Note that since the buffer is circular that “below” does not always mean at a numer-
ically smaller offset. Since the tail pointer always points at the entry to be written next, the last entry
(the one immediately below the head) in the circular buffer always remains unused.

If the log is full at the time of the arrival of the virtual interrupt request, logging is suspended and
MMIO Offset 2020h[GALOverflow] is set to 1. When this occurs software must intervene to resume
logging.

Note that the IOMMU maintains a copy of the tail pointer register (MMIO Offset 2048h) in system
memory at the location specified by the contents of the register MMIO Offset 00E8h to reduce the
latency involved in reading the current value of the tail pointer from the internal register.

The Guest Virtual APIC Log Base Address Register [MMIO Offset 00E0h] is used by system soft-
ware to assign the system physical address of the guest vAPIC log and to define its size. The guest
vAPIC log occupies contiguous physical memory starting at the programmed base address up to the
programmed size. The size of the guest virtual APIC log must be a multiple of 4 Kbytes (to facilitate
“modulo N” indexing for circularity) and can be as large as 8192 entries (corresponding to a 64-Kbyte
buffer). The base address of the GA log must be aligned to a multiple of 4 Kbytes.

System software uses the Guest Virtual APIC Log Tail Address Register [MMIO Offset 00E8h] to
assign the system physical address of the location where IOMMU maintains the copy of the guest
vAPIC Log tail pointer.

Software is responsible to initialize the head and tail pointers to zero to create an empty log before
enabling guest vAPIC event logging. When the head pointer and the tail pointer are equal, the guest
virtual APIC event log is empty.

To add an entry to the guest virtual APIC log, the IOMMU proceeds as follows:
1. Compare the GA Log head and tail pointers (MMIO Offset 2040h[GALogHead] and MMIO Off-

set 2048h[GALogTail]) to determine if the log is full.
Let Head = GALogHead >> 3, Tail = GALogTail >> 3, and Max = GA Log size >> 3.
If {(Head ≥ Tail) ? Tail : Tail + Max)} − Head = (Max − 1), then the log is full.

2. If the log is already full, set the overflow bit APIC log overflow and cease guest virtual APIC log-
ging.

3. If the log is not full, write a 64-bit log entry to the guest virtual APIC log in memory (see
Table 75),

[AMD Public Use]

Architecture 187

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

4. Increment the register copy of the tail pointer (modulo the size of the log, see MMIO Offset
00E0h[GALogLen]),

5. Write the new tail pointer value to the Guest Virtual APIC Log Tail Pointer Register [MMIO Off-
set 2048h],

6. Write the new tail pointer value to the shadow tail pointer in memory (see Guest Virtual APIC
Log Tail Address Register [MMIO Offset 00E8h]), and

7. Send a guest virtual APIC log interrupt, if enabled.

The guest virtual APIC log has overflowed when an interrupt request is received by the IOMMU that
is to be logged and would otherwise consume the last unused slot. The log is empty when the Guest
Virtual APIC Log Head Pointer Register [MMIO Offset 2040h] and Guest Virtual APIC Log Tail
Pointer Register [MMIO Offset 2048h] are equal.

The guest virtual APIC event log is full when all slots but one are used. The IOMMU uses the same
interrupt to signal when the guest virtual APIC log is written or overflows. The guest virtual APIC log
has overflowed when a request occurs that is to be logged and would otherwise consume the last
unused slot. When the guest virtual APIC log has overflowed, the MMIO Offset 2020h[GALOver-
flow] bit is set, any data for new virtual APIC events is discarded, and logging is disabled. Host soft-
ware must make space in the log by reading entries (by adjusting the head pointer) before Guest
virtual APIC event logging may then be restarted.

2.7.2 Guest Virtual APIC Log Entry (Generic)
All GA requests recorded by the IOMMU are 64-bit (8-byte) records. The IOMMU must set the
Coherent bit in the HyperTransport™ packet when generating writes to the GA log.

Figure 77: Generic Guest Virtual APIC Log Buffer Entry Format

2.7.3 Guest Virtual APIC Request Entry (GA_GUEST_NR)
When the IOMMU receives an interrupt request for which IRTE[IsRun] indicates the guest OS is not
running, it records the interrupt in the backing page for the virtual APIC and signals the hypervisor of
the undelivered interrupt. If supported (see MMIO Offset 0030h[GASup] and MMIO Offset
0018h[GAEn]), the IOMMU processes guest virtual interrupt requests. When the guest virtual APIC
is in use for the device and the guest OS is not running (see IRTE[GuestMode] and IRTE[IsRun]), the
IOMMU creates a new GA_GUEST_NR entry in the guest virtual APIC event log buffer.

Figure 78: GA_GUEST_NR Log Buffer Entry Format

31 16 15 0

GAInformation[31:0] +00

OpCode[3:0] Reserved DeviceID +04

31 28 27 16 15 8 0

GATag +00

0001b Reserved DeviceID +04

[AMD Public Use]

188 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

The log entry contains a GATag field for software use.

2.7.4 Guest Virtual APIC Log Restart Procedure
The IOMMU guest virtual APIC logging is disabled after system reset and when the log overflows.
The IOMMU does not log guest virtual APIC events until logging is enabled, setting IOMMU Status
Register [MMIO Offset 2020h][GALOverflow] to indicate that guest APIC events are not being
logged. To restart the guest virtual APIC event logging after the log overflows, use the following pro-
cedure.
• Wait until MMIO Offset 2020h[GALogRun]=0b so that all request entries are completed as

circumstances allow. GALogRun must be 0b to modify the guest virtual APIC log registers safely.
• Write MMIO Offset 0018h[GALogEn]=0b.
• As necessary, change the following values (e.g., to relocate or resize the guest virtual APIC event

log):
• the Guest Virtual APIC Log Base Address Register [MMIO Offset 00E0h],
• the Guest Virtual APIC Log Head Pointer Register [MMIO Offset 2040h][GALogHead], and
• the Guest Virtual APIC Log Tail Pointer Register [MMIO Offset 2048h][GALogTail].

• Write MMIO Offset 2020h[GALOverflow] = 1b to clear the bit (W1C).
• Write MMIO Offset 0018h[GALogEn] = 1b, and either set MMIO Offset 0018h[GAIntEn] to

enable the GA log interrupt or clear the bit to disable it.

The IOMMU now creates guest virtual APIC event log entries for new events.

2.8 IOMMU Interrupt Support
The IOMMU supports the signaling of interrupts using both the MSI and the MSI-X mechanisms.
However, only one mechanism can be enabled at a time. The MSI capability must support 64-bit
addressing. The IOMMU must not set the PassPW bit when sending interrupts associated with the
IOMMU over HyperTransport™ links.

The IOMMU supports generation of an interrupt when the event log is updated or overflows and
when a completion wait command completes (see Capability Offset 10h[MsiNum], MMIO Offset

Table 75: GA_GUEST_NR Log Buffer Entry Fields

Bits Description

31:0
+00

GATag[31:0]. Specifies the GATag taken from the IRTE entry (see Figure 18 and Table 22)
that requested the virtual interrupt service for the guest found to be not-running.

31:28
+04

0001b. Specifies a GA_GUEST_NR from the peripheral identified in the DeviceID field.

27:16
+04

Reserved.

15:0
+04

DeviceID. Specifies the DeviceID that requested the guest virtual interrupt service.

[AMD Public Use]

Architecture 189

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

0018h[ComWaitEn], and MMIO Offset 0018h[EventIntEn]), and when the peripheral page request
log is updated or overflows (see Capability Offset 10h[MsiNumPPR] and MMIO Offset
0018h[PprIntEn]).

2.9 Memory Address Routing and Control (MARC)
The Memory Access Routing and Control (MARC) feature provides simple, static memory virtual-
ization and access protection for SoC-integrated devices that require low-latency access to system
memory. MARC provides this address virtualization while avoiding the need for costly page table
walks. MARC hardware is set up and controlled by trusted system software.

When a device virtual address (DVA) lies within one of the defined regions (MARC aperture) and
access permissions checking allows the access requested by the device, the IOMMU translation
mechanism is bypassed and MARC provides the system physical address to be used for the access. If
the DVA does not lie within one of the programmed and enabled apertures, or the access is denied
based on permissions checking, the address is passed to the IOMMU without flagging an error. The
IOMMU will then use the translation and permissions information in its page tables to check the
access. If a translation is available and permissions checking allows the access, the IOMMU will
complete the translation.

Each MARC aperture is defined by programming a base and a length register. For each aperture, a
third relocation register provides the system physical address (SPA) to which that region in the DVA
space is mapped. Access protection and an enable bit are provided by fields in the relocation register.
The mechanism maps aligned 4-Kbyte pages of address space.

A given implementation may support either four or eight MARC apertures. MMIO Offset
0030h[MarcSup] supplies the number of MARC apertures supported by a given implementation.
MMIO Offset 0018h[MarcEn] provides a global enable for the MARC feature. If MarcEn is set to 0,
all DVAs emitted by I/O devices are sent to the IOMMU for translation.

The relocation register for each aperture MARC Aperture [0–3] Relocation Register [MMIO Offset
02[08,20,38,50]h] provides a RelocEn bit to enable each individual aperture 0–3 and a ReadOnly bit
to establish the device access allowed for each aperture. When ReadOnly is programmed to 0, device
read or write access is allowed; when programmed to 1, only read access is allowed. When RelocEn
is set to 0, the corresponding aperture is ignored.

The MARC mechanism maps addresses at a 4-Kbyte granularity. The architecture supports 52-bit
addresses. Thus only address bits [51:12] of the DVA are examined. Interpreted as an unsigned inte-
ger, this corresponds the page frame number (PFN).

The PFN of the DVA is compared with the PFN specified by the value of bits [51:12] of the MARC
Aperture [0–3] Base Register [MMIO Offset 02[00,18,30,48]h]. If the difference is greater than or
equal to zero but less than MarcLength specified by bits [51:12] of the MARC Aperture [0–3] Length
Register [MMIO Offset 02[10,28,40,58]h], the DVA falls within the corresponding MARC aperture
and the access permission for that aperture is checked. If requested access type (read or write) is
allowed by the setting of ReadOnly for that aperture, the access is allowed and bits [51:12] of the
relocation register are substituted for bits [51:12] of the DVA. The byte offset within the page is
provided by bits [11:0] of the DVA.

[AMD Public Use]

190 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

To define an aperture of one 4-Kbyte page, MarcLength is programmed to 1. If a value of 0 is used,
the behavior of the hardware is implementation-dependent, but does not result in an error.

2.10 vIOMMU
The vIOMMU feature may be used to accelerate multiple guest IOMMUs. vIOMMU allows the
IOMMU hardware to directly access and process guest data structures, such as the guest command
buffers, guest peripheral page request logs, and guest event logs. It also allow the IOMMU hardware
to send interrupts directly to the guest IOMMU drivers. This feature is supported if MMIO Offset
0030h[vIommuSup]=1. When enabled, DTE[vImuEn]=1 indicates the guest owning this device is a
vIOMMU enabled guest, and IOMMU should write event and peripheral page requests associated
with this device into the guest data structures. DTE[GuestID] specifies the guest ID associated with
the device. GuestID is an opaque identifier for a VM. All devices assigned to the VM must share the
same DTE[GuestID] value, and the same DTE[vImuEn] settings.

Host software must allocate MMIO resources for the IOMMU Virtual Function MMIO region and
IOMMU Virtual Function Control MMIO region. Software must further map a portion of each Guest
IOMMU's MMIO register space onto a portion of the IOMMU Virtual Function MMIO region. When
vIOMMU is enabled, host software must enable the Guest Virtual APIC feature (MMIO Offset
0018h[GAEn]).

Host software should map a VM-specific IVRS ACPI table to the VM view that reflects the appropri-
ate base addresses and features (e.g. MMIO Base address, EFR, IVHD/IVMD substructures) reflect-
ing the appropriate addresses and features to the guest OS utilizing the IOMMU.

2.10.1 vIOMMU Private Address Space

When vIOMMU is enabled, software must manage a new IOMMU private address space. The private
address space is accessed by the IOMMU using the host page table referenced by the Device Table
Entry associated with the device ID of the IOMMU. The private address space maps both private
backing storage memory used by vIOMMU and Guest IOMMU memory data structures. The Guest
IOMMU memory data structures are also mapped into the guest physical address space of each VM
and are backed by real memory.

The DTE for the IOMMU's DeviceID must be set with V=1, TV=1, GV=0, Mode=100b.

[AMD Public Use]

Architecture 191

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 79: IOMMU Private Address Map

2.10.1.1 vIOMMU Backing Storage Memory

Host software must allocate unpinned memory buffers for the following regions of the IOMMU
address space. These buffers should be treated as uncacheable by software.

IO M M U P rivate A ddress

G u est0 C m d B u f (512K B)

G u est1 C m d B u f (512K B)

G u est2^16 -1 C m d B u f (512K B)

...

2^ 16* 512K B = 32G B

G u e st0 P P R B Lo g (512K B)

G u e st1 P P R B Lo g (512K B)

Guest2^16-1 PPRBLog (512KB)

...

2^ 16* 512K B = 32G B

G u e st0 P P R Lo g (512K B)

G u e st1 P P R Lo g (512K B)

G u est2^ 16 -1 P P R Lo g (512K B)
...

2^ 16* 512K B = 32G B

48'h 00 28 _ 0000_ 0000

48'h 00 30 _ 0000_ 0000

48'h 00 38 _ 0000_ 0000

48'h 00 40 _ 0000_ 0000

G u e st0 E ven tB Lo g (512K B)

G u e st1 E ven tB Lo g (512K B)

Guest2^16-1 EventBLog (512KB)

...

2^ 16* 512K B = 32G B

G u e st0 E ve n tLo g (512K B)

G u e st1 E ve n tLo g (512K B)

Guest2^16-1 EventLog (512KB)

...

2^ 16* 512K B = 32G B

48'h 00 48 _ 0000_ 0000

48'h 00 50 _ 0000_ 0000

48'h 00 00_0000_ 0000

G u est0 D e vice ID M a p p in g (1M B)

G u est1 D e vice ID M a p p in g (1M B)

G u est2^16- 1 D evic e ID M a p p in g (1M B)

...

2^ 16* 1M B = 64G B

G u e st0 D o m a in ID M a p p in g (512K B)

G u e st1 D o m a in ID M a p p in g (512K B)

Guest2 ^16-1 D om ain ID M ap p ing (512KB)

...

2^ 16* 512K B = 32G B

48'h 00 10 _ 0000_ 0000

48'h 00 20 _ 0000_ 0000

IO M M U G e n era l B a ck in g Sto ra g e
(8M B)

[AMD Public Use]

192 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2.10.2 vIOMMU MMIO Resources

The vIOMMU feature adds two additional MMIO resources. The Virtual Function MMIO (VFM-
MIO) region is used by Guests to access IOMMU MMIO registers implemented by vIOMMU hard-
ware. The Virtual Function Control MMIO (VFCntlMMIO) region is used by the Hypervisor
software to communicate Guest<->Host mappings used by vIOMMU.

BIOS software is expected to allocate MMIO resources for both of these regions.

Hypervisor software is responsible for mapping guest IOMMU MMIO accesses between offsets
2000h and 2FFFFh onto the aligned 4KB section of the VFMMIO region corresponding to guest's
vIOMMU GuestID value. All other guest MMIO addresses are not handled by vIOMMU hardware
and must be emulated.

Software must access the VFCntlMMIO region using either 1DW or 2DW accesses with all byte
enables set.

Table 76: Pinned Memory Buffer Regions

Size Starting Address Notes

8MB 0000_0000_0000h This memory must be allocated regardless of the number
of VMs. The underlying memory may not be shared
between IOMMU instances.

Software must initialize this region of memory to all-zero
prior to enabling vIOMMU.

1MB 0010_0000_0000 + (N<<20) This region is allocated for each GuestID=N that uses
vIOMMU. This contains the DeviceID mapping table.

Software must initialize the region of memory associated
with a Guest to all-zero prior to enabling that Guest.

512KB 0020_0000_0000 + (N<<19) This region is allocated for each GuestID=N that uses
vIOMMU. This contains the DomainID mapping table.

Software must initialize the region of memory associated
with a Guest to all-zero prior to enabling that Guest.

[AMD Public Use]

Architecture 193

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 80: IOMMU Virtual Function Control MMIO and IOMMU Virtual Function MMIO

2.10.3 vIOMMU Event Logging

When IOMMU hardware detects an error, the IOMMU hardware logs an event into the host event
log. The Host software received the log and determine whether the log should be communicated to
the guest. For a vIOMMU enabled guest, host software must inject the emulated event into the guest
event log via the host IOMMU command buffer.

The Host software writes an INSERT_GUEST_EVENT command followed by an event entry into
the IOMMU command buffer to indicate the command immediately after the
INSERT_GUEST_EVENT command is an event that IOMMU needs to be written to the guest event
log. IOMMU will not validate the contents of the guest event entry before injecting it into the guest
event log. Host software is responsible for processing the event log entry to be suitable for guest con-
sumption, for example, by changing addresses from SPA to GPA format.

2.10.4 vIOMMU Extended Interrupt Remapping

When vIOMMU is enabled, the IOMMU utilizes the Guest Virtual APIC features to send interrupts
from Guest IOMMUs directly to the appropriate vCPUs. The Interrupt Remapping Table used by the
IOMMU's own DTE is extended to 2-levels.

Guest0 IOMMU MMIO Offset
[2000-2FFF] (4KB)

IOMMU MMIO VF BAR

Guest1 IOMMU MMIO Offset
[2000-2FFF] (4KB)

Guest2 IOMMU MMIO Offset
[2000-2FFF] (4KB)

Guest3 IOMMU MMIO Offset
[2000-2FFF] (4KB)

Guest216-1 IOMMU MMIO Offset
[2000-2FFF] (4KB)

256MB

Guest0 Controls (24B)

IOMMU MMIO VFCNTL BAR

4MB

IOMMU VF MMIO

IOMMU VF Control MMIO

Guest0 DID Map Control
Reserved (8B)

64B

Reserved (8B)

Guest1 Controls (24B)

Guest1 DID Map Control (24B)
Reserved (8B)

Reserved (8B)

Guest216-1 Controls (24B)

Guest2 16-1 DID M ap Control
Reserved (8B)

Reserved (8B)

64B

64B

[AMD Public Use]

194 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Figure 81: Extended Interrupt Remapping Table

The Interrupt Table Root Pointer [51:6] in the DTE becomes the base pointer to the Level-1 Interrupt
Table. The IntTabLen in the DTE becomes the length of the Level-1 Interrupt Table. SW must allo-
cate a two consecutive 4K page for the Level 1 Interrupt Table.

Vector[1:0] :

• 00 - Iommu event/general interrupt
• 01 - Iommu ppr interrupt
• 10 - Reserved
• 11 - Reserved

Level-1 Interrupt Table Entry Format

Figure 82: Level-1 Interrupt Table Entry Format

Interrupt Table Root Pointer
(SPA)

IRTE

vAPIC Backing Page

Device Table Entry

Interrupt Remapping Table

IRT Base Table
Pointer

GuestID[15:8] GuestID[7:0]

10

Virtual IRR

Level-1
Interrupt Table

Vector[1:0]

8

128b

64b

Interrupt Table Base Pointer [51:32]Reserved

63 52 51 32

Interrupt Table Base Pointer [31:6]

31

R
sv

6 1

V

0

IntTabLen

5 2

[AMD Public Use]

Architecture 195

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

2.10.5 vIOMMU and EOI Bus Cycle

Use of the EOI special bus cycle is not supported in systems that enable the vIOMMU feature. The
EOI special bus cycle is generated by writing the EOI or SEOI registers inside the LAPIC when the
associated interrupt vector is configured as level sensitive. Software must instead configure all device
interrupts as edge-triggered using the IOMMU interrupt remapping facilities. In addition to writing
the EOI/SEOI register in the LAPIC, software must manually write the appropriate vector number
into the EOI register in the IOAPIC that generated the interrupt request. The IOAPIC entry may con-
tinue to be configured as level sensitive.

2.11 Secure ATS Support
In normal non-secure processing of PCIe ATS requests, the IOMMU performs a full address transla-
tion and returns an SPA to the requesting device to be stored in that device's IOTLB. The device may
subsequently issue Translated DMA containing SPAs. The IOMMU only check that the device was
allowed to issue such requests by checking DTE[I]=1 and does not attempt to validate the SPA. Mali-
cious devices or vulnerabilities in a device IOTLB might allow an attacker to generate DMA with
arbitrary SPAs.

The IOMMU may optionally support processing ATS requests as secure ATS requests when IOTLB
is supported and enabled, EFER[SATSSup]=1 and DTE[SATS]=1. When processing secure ATS
requests, the IOMMU will walk the full page table as normal to determine whether the requested page
is present and whether sufficient permissions are available. This allows the device to support
unpinned memory access. Instead of returning the final SPA to the device, the IOMMU returns the
previous GPA.

When receiving Translated DMA from a device with DTE[SATS]=1, the IOMMU performs in-line
GPA to SPA translation. This ensures that any malicious devices or vulnerable IOTLB implementa-
tions do not have access to the full SPA space even if they can generate Translated DMA with arbi-
trary addresses.

2.12IOMMU Secure Nested Paging (SEV-SNP) Support
The SEV-SNP feature is enabled in three stages. During initial boot, the BIOS software chooses

Table 77: Level-1 Interrupt Table Entry Format

Bits Description

51:6 Interrupt Table Base Pointer. It contains the SPA of the base address of the interrupt remapping
table for the I/O device. Must be 8K aligned (bit[12:6] must be 0)

5:2 IntTabLen. It contains the length of the interrupt remapping table.
0000b = 1 entry0001b = 2 entries
0010b = 4 entries 0011b = 8 entries
...
1010b = 1024 entries 1011b = 2048 entries
11xxb = reserved
Note: IntTabLen=11xxb is reported as an event when IV=1.

0 V. Valid bit. Indicate this Level-1 Interrupt Table entry is valid.

[AMD Public Use]

196 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

whether to enable the system for SEV-SNP support. This is performed through device-specific
methods. Next, the Hypervisor software prepares the system to use SEV-SNP. This includes having
the IOMMU driver prepare the IOMMU for SEV-SNP. Hypervisor software must also issue the
SNP_INIT command to the PSP. Finally, SNP-aware Guest VMs may be loaded.

The IOMMU driver software may check MMIO Offset 0030h[SnpSup] = 1 to ensure the system sup-
ports SEV-SNP. It must also modify its behavior to conform to the restrictions for SNP-enabled sys-
tems described in the following sections.

This document refers to the system or IOMMU as being SNP-enabled after a successful SNP_INIT
command is executed by the PSP. Note that this definition is different from the one used in APM2.

2.12.1 SEV-SNP RMP Access Checks

The IOMMU checks that all device DMA operations target Hypervisor-owned memory as identified
by the RMP. New event log entry formats are defined for faults related to checking the RMP. See Sec-
tion 2.5.15 [RMP_HARDWARE_ERROR Event] on page 170 and Section 2.5.14 [RMP_PAGE_-
FAULT Event] on page 168.

2.12.2 SEV-SNP Restrictions

The following sections describe additional restrictions when using SEV-SNP.

2.12.2.1 SEV-SNP Register Locks

The following IOMMU registers become locked and are no longer writeable after the system
becomes SNP-enabled:

• Device Table Base Address Register [MMIO Offset 0000h]
• Command Buffer Base Address Register [MMIO Offset 0008h]
• Event Log Base Address Register [MMIO Offset 0010h]
• IOMMU Control Register [MMIO Offset 0018h] fields:

• MMIO Offset 0018h[IOMMUEn]
• MMIO Offset 0018h[DevTblSegEn]

• IOMMU Exclusion Base Register / Completion Store Base Register [MMIO Offset 0020h]
• IOMMU Exclusion Range Limit Register / Completion Store Limit Register [MMIO Offset 0028h]
• PPR Log Base Address Register [MMIO Offset 0038h]
• Guest Virtual APIC Log Base Address Register [MMIO Offset 00E0h]
• Guest Virtual APIC Log Tail Address Register [MMIO Offset 00E8h]
• PPR Log B Base Address Register [MMIO Offset 00F0h]
• Event Log B Base Address Register [MMIO Offset 00F8h]
• Device Table Segment n Base Address Register [MMIO Offset 01[00–30]h]

2.12.2.2 SEV-SNP COMPLETION_WAIT Store Restrictions

On systems that are SNP-enabled, the store address associated with any host COMPLETION_WAIT
command (s=1) is restricted. The Store Address must fall within the address range specified by the
Completion Store Base and Completion Store Limit registers. When the system is SNP-enabled, the
memory within this range will be marked in the RMP using a special immutable state by the PSP. This
memory region will be readable by the CPU but not writable.

[AMD Public Use]

Architecture 197

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This change only applies to COMPLETION_WAIT commands issued through the host command
buffer. It does not apply to commands issued through command buffers belonging to Guest IOMMUs,
including those exposed through vIOMMU.

2.12.2.3 SEV-SNP Exclusion Range Restrictions

The exclusion range feature is not supported on systems that are SNP-enabled. Additionally, the
Exclusion Base and Exclusion Range Limit registers are re-purposed to act as the Completion Store
Base and Limit registers.

2.12.2.4 SEV-SNP Page Mode Restrictions

In SNP-enabled systems, software must set DTE[V]=1 for all devices in the system. The IOMMU
aborts DMA operations from devices with DTE[V]=0 and reports
ILLEGAL_DEV_TABLE_ENTRY.

The use of DTE[Mode]=0 is not supported on systems that are SNP-enabled. The IOMMU aborts
DMA operations from devices with DTE[Mode]=0 and reports RMP_PAGE_FAULT.

For devices that only generate interrupts, such as IOAPIC, software is advised to set DTE[V]=1 and
DTE[TV]=0 on SNP-enabled systems. IOMMU does not check DTE[Mode] if DTE[TV]=0.

2.12.3 SEV-SNP Guest Virtual APIC Support

On SNP-enabled systems, guest virtual APIC support is determined through MMIO Offset
01A0h[SNPAVICSup] instead of MMIO Offset 0030h[GAMSup]. Additionally, guest virtual APIC
interrupt remapping is controlled through MMIO Offset 0018h[SNPAVICEn] instead of MMIO Off-
set 0018h[GAMEn].

[AMD Public Use]

198 Architecture

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

[AMD Public Use]

Registers 199

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3 Registers

The IOMMU is configured and controlled via two sets of registers—one in the PCI configuration
space and another set mapped in system address space. Since the IOMMU appears as a PCI function,
it has a capability block in the PCI configuration space.

IOMMU registers not defined in this chapter are reserved. Software should not write reserved register
locations and must not rely on the value returned by hardware if a reserved register is read. Bit ranges
within writeable registers that are designated as Reserved should always be written as all zeros. When
read, software must not rely on the value returned in that bit range.

3.1 PCI Resources
The IOMMU is implemented as an independent PCI Function. Any PCI Function containing an
IOMMU capability block cannot be used for any purpose other than containing an IOMMU. A PCI
Function containing an IOMMU capability block does not include PCI BAR registers. Configuration
and status information for the IOMMU are mapped into PCI configuration space using a PCI capabil-
ity block.

A peripheral may implement more than one IOMMU within a single Function. One or more IOMMU
capability blocks may be implemented in a PCIe® Function.

If a single IOMMU capability block is implemented in a PCI Function, the IOMMU may support
either MSI or MSI-X or both. If more than one IOMMU capability block is implemented in a Func-
tion, the IOMMU must support generating MSI-X interrupts. The Function must assign a distinct
interrupt vector to each interrupt that can be generated by each IOMMU capability block.

The base functionality of the IOMMU supports one interrupt which is used report Event Log excep-
tions and CommWait Completions. If this interrupt is enabled, the field Capability Offset 10h[Msi-
Num] must be written with the appropriate MSI/MSI-X vector. If PPR logging and GA logging are
supported, two more interrupt sources are provided to signal PPR and GA logging exceptions. If the
PPR log interrupt is to be enabled, a vector for it must be first set up for it in Capability Offset
10h[MsiNumPPR]. If the GA log interrupt is to be enabled, a vector for it must be first set up in Capa-
bility Offset 10h[MsiNumGA].

The PCI class is System Base Peripheral (08h) with a subclass of IOMMU (06h) and a programming
interface code of 00h, as issued by the PCI-SIG.

The HyperTransport™ UnitID used when an IOMMU generates requests must not be used for any
other traffic. A HyperTransport™ UnitID can be shared by multiple IOMMUs within a physical com-
ponent.

3.1.1 Accessing MSI Capability Block Registers

Optionally, specific fields of the MSI capability registers are mapped to MMIO space by IOMMU
hardware. When this capability is supported these registers can be accessed either through configura-
tion space reads and writes or via memory reads and writes. However, in some cases field write capa-
bility varies between configuration space and MMIO space access. See Section 3.4.8 [MMIO Access

[AMD Public Use]

200 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

to MSI Capability Block Registers].

3.2 IOMMU Base Capability Block Registers
The presence of an IOMMU capability block in a PCIe Function indicates the presence of an
IOMMU. The IOMMU capability block contains various registers to control the IOMMU and to con-
figure the location of the MMIO registers of the IOMMU.

When Capability Offset 04h[Enable] is written with a 1b, all RW capability registers defined in this
section are locked until the next system reset. This means the registers become read-only and attempts
to write them are ignored.

This is the first register of the IOMMU capability block and provides information about capabilities
that the IOMMU supports.

Capability Offset 00h IOMMU Capability Header

31 29 28 27 26 25 24 23 19 18 16 15 8 7 0

Reserved

C
ap

E
xt

E
F

R
S

up

N
pC

ac
he

H
tT

un
ne

l

Io
tlb

S
up

CapRev CapType CapPtr CapID

Bits Description

31:29 Reserved.

28 CapExt: 1 = indicates support for IOMMU Miscellaneous Information Register 1 [Capability Offset 14h]. 0 =
Capability Offset 14h not supported.

27 EFRSup: IOMMU Extended Feature Register support. RO. Reset Xb. EFRSup = 1 indicates IOMMU
Extended Feature Register [MMIO Offset 0030h] is supported. If EFRSup = 0, MMIO Offset 0030h is
Reserved.

26 NpCache: Not present table entries cached. RO. Reset Xb. 1 = Indicates that the IOMMU caches page table
entries that are marked as not present. When this bit is set, software must issue an invalidate after any change to
a PDE or PTE. 0 = Indicates that the IOMMU caches only page table entries that are marked as present. When
NpCache is clear, software must issue an invalidate after any change to a PDE or PTE marked present before the
change.
Implementation Note: For hardware implementations of the IOMMU, this bit must be 0b.

25 HtTunnel: HyperTransport™ tunnel translation support. RO. Reset Xb. Indicates that the device contains a
HyperTransport™ tunnel that supports address translation on the HyperTransport™ interface.

24 IotlbSup: IOTLB Support. RO. Reset Xb. Indicates the IOMMU will support ATS translation request messages
as defined in PCI ATS 1.0 or later.

23:19 CapRev: Capability revision. RO. Reset 0_0001b. Specifies the IOMMU interface revision.
Software Note: this value is changed when architectural changes cause an interface incompatibility.

18:16 CapType: IOMMU capability block type. RO. Reset 011b. Specifies the layout of the Capability Block as an
IOMMU capability block.

15:8 CapPtr: Capability pointer. RO. Reset XXh. Indicates the location of the next capability block, or 00h if this is
the last capability block in the capability list.

7:0 CapId: Capability ID. RO. Reset 0Fh. Indicates a Secure Device capability block.

[AMD Public Use]

Registers 201

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register specifies bits [31:14] of the base address (SPA) of the IOMMU control registers. This
register is locked when IOMMU Base Address Low[Enable] is written with a 1b.

When MMIO Offset 0030h[PCSup] = 1, the IOMMU event counters are supported. The MMIO reg-
ister area must be sized at 512 Kbytes and must be 512-Kbyte aligned. Base Address[18:14] must be
set to 0_0000b. When MMIO Offset 0030h[PCSup] = 0, the IOMMU event counters are not sup-
ported. The MMIO area must be sized at 16 Kbytes and must be 16-Kbyte aligned. In this case, Base
Address[31:14] may be set to any value.

Capability Offset 04h IOMMU Base Address Low Register

31 19 18 14 13 1 0

BaseAddress[31:19] BaseAddress[18:14] Reserved

E
na

bl
e

Bits Description

31:19 BaseAddress[31:19]. RW when Capability Offset 04h[Enable] = 0. RO when Capability Offset 04h[Enable] =
1. Reset 0_0000_0000_0000b. Specifies lower bits of the base address of the IOMMU control registers. Base
Address[31:19] may be set to any value.

18:14 BaseAddress[18:14]. RW when Capability Offset 04h[Enable] = 0. RO when Capability
Offset 04h[Enable] = 1. Reset 0_0000b. This field must be set to 0_0000b.

13:1 Reserved. Software must write zeros to this field and not rely on this field to return the value written when read.

0 Enable. RW1S. Reset 0b. 1 = IOMMU accepts memory accesses to the address specified in the Base Address
Register. When Enable is written with a 1, all RW capability registers defined in Section 3.2 [IOMMU Base
Capability Block Registers] are locked until the next system reset.
Note: BaseAddress may be changed and locked with the same write operation that sets Enable = 1b.

[AMD Public Use]

202 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register specifies the upper 32 bits of the base address of the IOMMU control registers. This reg-
ister is locked when IOMMU Base Address Low[Enable] is written with a 1b.

This register indicates the device and function numbers of the first and last devices associated with
the IOMMU. This register is locked when IOMMU Base Address Low[Enable] is written with a 1.
Root port devices that have device and function numbers between the first and last device numbers
inclusive are supported by the IOMMU and provide full source identification to the IOMMU. Non-
root port devices that have device and function numbers between the first and last device numbers
inclusive are devices integrated in with the IOMMU and support address translation using the
IOMMU. Integrated devices associated with the IOMMU must be located on the same logical bus.

Capability Offset 08h IOMMU Base Address High Register

31 0

BaseAddress[63:32]

Bits Description

31:0 BaseAddress[63:32]. RW when Capability Offset 04h[Enable] = 0. RO when Capability Offset 04h[Enable] =
1. Reset 0000_0000h. Specifies the upper 32 bits of the base address of the IOMMU control registers.

Capability Offset 0Ch IOMMU Range Register

31 24 23 16 15 8 7 6 5 4 0

LastDevice FirstDevice BusNumber

R
ng

V
al

id

R
es

er
ve

d

UnitID

Bits Description

31:24 LastDevice: Last device. RW when Capability Offset 04h[Enable] = 0. RO when Capability Offset 04h[Enable]
= 1. Reset XXh. Indicates device and function number of the last integrated device associated with the IOMMU.
Note: an implementation may define this value as RO.

23:16 FirstDevice: First device. RW when Capability Offset 04h[Enable] = 0. RO when Capability Offset
04h[Enable] = 1. Reset XXh. Indicates device and function number of the first integrated device associated with
the IOMMU.
Note: an implementation may define this value as RO.

15:8 BusNumber: Device range bus number. RW when Capability Offset 04h[Enable] = 0. RO when Capability
Offset 04h[Enable] = 1. Reset XXh. Indicates the bus number that FirstDevice and LastDevice reside on.
Note: an implementation may define this value as RO.

[AMD Public Use]

Registers 203

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register returns the size of virtual and physical addresses supported by the IOMMU and the mes-
sage number for MSI or MSI-X interrupts associated with the IOMMU.

7 RngValid: Range valid. RW when Capability Offset 04h[Enable] = 0. RO when Capability Offset 04h[Enable]
= 1. Reset Xb. 1b = the BusNumber, FirstDevice, and LastDevice fields are valid. Although the register contents
are valid, software is encouraged to use I/O topology information as defined in Chapter 5, "I/O Virtualization
ACPI Table". 0b = Software must use I/O topology information.
Note: an implementation may define this value as RO.

6:5 Reserved.

4:0 UnitID: IOMMU HyperTransport™ UnitID. RW when Capability Offset 04h[Enable] = 0. RO when Capability
Offset 04h[Enable] = 1. Reset X_XXXXb. This field returns the HyperTransport™ UnitID used by the
IOMMU.
Note: an implementation may define this value as RO.
Note: this field is deprecated and may be set to 0_0000b.

Capability Offset 10h IOMMU Miscellaneous Information Register 0

31 27 26 23 22 21 15 14 8 7 5 4 0

MsiNumPPR Reserved

H
tA

ts
R

es
v

VAsize PAsize GVAsize MsiNum

Bits Description

31:27 MsiNumPPR: Peripheral Page Request MSI message number. RO. Reset X_XXXXb. This field must indicate
which MSI/MSI-X vector is used for the interrupt message generated by the IOMMU for the peripheral page
request log when MMIO Offset 0030h[PPRSup] = 1. MsiNumPPR must be zero when PPRSup = 0.
For MSI there can only be one IOMMU so this field must be zero (Section 3.1 [PCI Resources]).
For MSI-X, the value in this field indicates which MSI-X Table entry is used to generate the interrupt message.
Either MSI or MSI-X must be implemented, but not both. This interrupt is not remapped by the IOMMU. If
neither MSI nor MSI-X are enabled and a PPR interrupt occurs, the interrupt is silently dropped.
Implementation Note: INTx is not supported for the PPR interrupt.

26:23 Reserved.

22 HtAtsResv: ATS response address range reserved. RW when Capability Offset 04h[Enable]= 0b. RO when
Capability Offset 04h[Enable] = 1b. Reset 0b. 1= The HyperTransport™ Address Translation address range for
ATS responses is reserved and cannot be translated by the IOMMU. 0= The Address Translation address range
can be translated by the IOMMU. See Table 3 on page 53.
Implementation Note: This bit may be RO if ATS is not supported.

Bits Description

[AMD Public Use]

204 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

21:15 VAsize: Virtual Address size. RO. Reset XXXXXXb. This field must indicate the size of the maximum virtual
address processed by the IOMMU. The value is the (unsigned) binary log of the maximum address size.
Allowed values are 32, 40, 48, and 64; all other values are reserved.
010_0000b = 32 bits
010_1000b = 40 bits
011_0000b = 48 bits
100_0000b = 64 bits
If guest translation is supported, this field defines the size of the GPA.

14:8 PAsize: Physical Address size. RO. Reset XXXXXXb. This field indicates the width of the maximum system
physical address (SPA) generated by the IOMMU. The value is the (unsigned) binary log of the maximum
address size. Allowed values are 40, 48, and 52; all other values are reserved.
010_1000b = 40 bits
011_0000b = 48 bits
011_0100b = 52 bits

7:5 GVAsize: Guest Virtual Address size. RO. Reset XXXb. This field must indicate the size of the maximum guest
virtual address processed by the IOMMU. The allowed size is 48 and all other values are reserved.
000b - 001b = Reserved.
010b = 48 bits
011b = 57 bits
100b - 111b = Reserved

4:0 MsiNum: MSI message number. RO. Reset XXXXXb. This field must indicate which MSI/MSI-X vector is
used for the interrupt message generated by the IOMMU for the IOMMU event log.
For MSI there can only be one IOMMU so this field must be zero (Section 3.1 [PCI Resources]).
For MSI-X, the value in this field indicates which MSI-X Table entry is used to generate the interrupt message.
Either MSI or MSI-X must be implemented, but not both. This interrupt is not remapped by the IOMMU.
Implementation Note: INTx is supported for backwards compatibility with the legacy implementation of the
IOMMU, but its use is discouraged in designs.

Bits Description

[AMD Public Use]

Registers 205

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register provides information about IOMMU extended capabilities. If Capability Offset 00h[Ext-
Cap] = 1, the contents of this register are valid. If Capability Offset 00h[ExtCap] = 0, this register is
reserved.

3.3 IOMMU Vendor Specific Capability Block Registers
The IOMMU Vendor Specific capability is a capability structure in PCI 3.0 compatible Configuration
Space. The presence of an IOMMU Vendor Specific capability block contains various registers to
control the vIOMMU.

This is the first register of the IOMMU vendor specific capability block and provides information
about vendor specific capabilities that IOMMU supports.

Capability Offset 14h IOMMU Miscellaneous Information Register 1

31 19 18 14 13 5 4 0

Reserved MsiNumGA

Bits Description

31:5 Reserved

4:0 MsiNumGA: MSI message number. RO. Reset XXXXXb. Message number for MSI or MSI-X interrupt
associated with the guest vAPIC virtual interrupt request log (GA Log). If GA logging is supported (as
indicated by MMIO Offset 0030h[GASup] = 1), Capability Offset 00h[ExtCap] will be set and this field will
contain valid data.

Vendor Specific Capability Offset 00hIOMMU Vendor Specific Capability Header

31 24 23 16 15 8 7 0

CapType CapLen CapPtr CapID

[AMD Public Use]

206 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register specifies the ID and the Revision of the IOMMU Vendor Specific Capability Block.

The registers specified below are the base address (SPA) of the IOMMU Virtual Function MMIO
area. The area must be 256M aligned.

Vendor Specific Capability Offset 08hIOMMU Virtual Function Base Address Low Register

31:28 VF_BaseAddress[31:28]. RW when Capability 110h [VF_Enable] = 0. RO when Capability
110h [VF_Enable] = 1. Reset 0000b. Specifies the lower bits of the base address of the IOMMU Vir-
tual Function MMIO region.

0 VF_Enable. RW1S. Reset 0b. 1 = IOMMU accepts memory accesses to the address specified in the
VF_BaseAddress field. Lock VF_BaseAddress once this bit is set.

Vendor Specific Capability Offset 0Ch IOMMU Virtual Function Base Address High Register

31:0 VF_BaseAddress[63:32]. RW when Capability 110h [VF_Enable] = 0. RO when Capability
110h [VF_Enable] = 1. Reset 0000_0000h. Specifies the upper bits of the base address of the
IOMMU Virtual Function MMIO region.

Bits Description

31:24 CapType: IOMMU vendor specific capability block type. RO. Reset 01h.

23:16 CapLen: Capability length. RO. Reset XXh. Indicate the length of this vendor specific capability block in
number of bytes.

15:8 CapPtr: Capability Pointer. RO. Reset XXh. Indicates the location of the next capability block, or 00h if this
is the last capability block in the capability list.

7:0 CapID: Capability ID. RO. Reset 09h. Indicates a Vendor-Specific Capability block.

Vendor Specific Capability Offset 04h IOMMU Vendor Specific Capability Info

31 24 23 16 15 8 7 0

Reserved VSC_Rev VSC_ID

Bits Description

31:24 Reserved

23:16 VSC_Rev: Vendor specific capability revision. RO. Reset 0h.

15:0 VSC_ID: Vendor specific capability ID. RO. Reset 00h.

31:28 – VF_BaseAddress[31:28] 27:1 – Reserved

0 – VF_Enable

31:0 – VF_BaseAddress[63:32]

[AMD Public Use]

Registers 207

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

The registers specified below are the base address (SPA) of the IOMMU Virtual Function Control
MMIO area. The area must be 4M aligned.

Vendor Specific Capability Offset 10hIOMMU Virtual Function Control Base Address Low Register

31:22 VFCntl_BaseAddress[31:22]. RW when Capability 118h [VFCntl_Enable]=0. RO when Capa-
bility 118h [VFCntl_Enable] = 1. Reset 00_0000_0000b. Specifies the lower bits of the base
address of the IOMMU Virtual Function Control MMIO region.

0 VFCntl_Enable. RW1S. Reset 0b. 1 = IOMMU accepts memory accesses to the address specified in
the VFCntl_BaseAddress field. Lock VFCntl_BaseAddress once this bit is set.

Vendor Specific Capability Offset 14hIOMMU Virtual Function Control Base Address High Register

31:0 VFCntl_BaseAddress[63:32]. RW when Capability 118h [VFCntl_Enable]=0. RO when Capa-
bility 118h [VFCntl_Enable] = 1. Reset 0000_0000h. Specifies the upper bits of the base address of
IOMMU Virtual Function Control MMIO region.

31:22 – VFCntl_BaseAddress[31:22] 21:1 – Reserved
0 – VFCntl_Enable

31:0 – VFCntl_BaseAddress[63:32]

[AMD Public Use]

208 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

3.4 IOMMU MMIO Registers
The IOMMU control registers are mapped using the IOMMU Base Address Low Register [Capability
Capability Offset 04h] and IOMMU Base Address High Register [Capability Capability Offset 08h]
specified in the IOMMU capability block. Software access to IOMMU registers may not be larger
than 64 bits. Accesses must be aligned to the size of the access and the size in bytes must be a power
of two. Software may use accesses as small as one byte.

3.4.1 Control and Status Registers

If device table segmentation is not supported or not enabled, this register establishes the base address
of the single, unified Device Table. When device table segmentation is supported and enabled, this
register serves as the base address register for segment 0 of the Device Table.

MMIO Offset 0000h Device Table Base Address Register

63 52 51 32

Reserved DevTabBase[51:32]

31 12 11 9 8 0

DevTabBase[31:12] Reserved Size[8:0]

Bits Description

63:52 Reserved.

51:12 DevTabBase: Device Table base address. RW. Reset 00_0000_0000h. Specifies bits [51:12] of the 4-Kbyte
aligned base address of the first level Device Table.

11:9 Reserved.

8:0 Size: Size of the Device Table. RW. Reset 000h. This field contains an unsigned value n that specifies the size of
the Device Table. The size indicated is (n + 1) * 4 Kbytes. For example, the value 0 corresponds to a table size
of 4 Kbytes and the value of 1FFh (the maximum that can be specified) corresponds to a table size of 2 Mbytes.

[AMD Public Use]

Registers 209

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register specifies the system physical address and length of the command buffer.

MMIO Offset 0008h Command Buffer Base Address Register

63 60 59 56 55 52 51 32

Reserved ComLen Reserved ComBase

31 12 11 0

ComBase Reserved

Bits Description

63:60 Reserved.

59:56 ComLen: Command buffer length. RW. Reset 1000b. Specifies the length of the command buffer in power-of-
2 increments. The minimum size is 256 entries (4 Kbytes); values less than 1000b are reserved.
0000b - 0111b = Reserved
1000b = 256 entries (4 Kbytes)
1001b = 512 entries (8 Kbytes)
...
1111b = 32768 entries (512 Kbytes)

55:52 Reserved

51:12 ComBase: Command buffer base address. RW. Reset 00_0000_0000h. Specifies bits [51:12] of the base
address of the command buffer. The base address must be aligned to 4 Kbytes.

11:0 Reserved

[AMD Public Use]

210 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register specifies the system physical address and length of the event log.

Software Note: If EventLen or EventBase is changed while the EventLogRun = 1, the IOMMU behav-
ior is undefined.

MMIO Offset 0010h Event Log Base Address Register

63 60 59 56 55 52 51 32

Reserved EventLen Reserved EventBase

31 12 11 0

EventBase Reserved

Bits Description

63:60 Reserved.

59:56 EventLen: Event log length. RW. Reset 1000b. Specifies the length of the event log in power of 2 increments.
The minimum size is 256 entries (4 Kbytes); values less than 1000b are reserved.
0000b - 0111b = Reserved
1000b = 256 entries (4 Kbytes)
1001b = 512 entries (8 Kbytes)
...
1111b = 32768 entries (512 Kbytes)

55:52 Reserved

51:12 EventBase: Event log base address. RW. Reset 00_0000_0000h. Specifies bits [51:12] of the base address of
the event log. The base address must be aligned to 4 Kbytes.

11:0 Reserved

[AMD Public Use]

Registers 211

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register controls the behavior of the IOMMU.

MMIO Offset 0018h IOMMU Control Register

63 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 34 33 32

S
N

P
A

V
IC

E
n

G
st

B
uf

fe
rT

R
P

M
od

e

IR
T

C
ac

h
eD

is

G
C

R
3T

R
P

M
od

e

R
es

er
ve

d

T
M

P
M

E
n

G
A

P
P

IE
n

G
A

U
pd

at
eD

is

vI
om

m
u

E
n

vC
m

dE
n

In
tC

ap
X

T
E

n

X
T

E
n

R
es

er
ve

d

G
D

U
pd

a
te

D
is

H
A

D
U

pd
at

e

E
P

H
E

n

N
um

In
tR

em
ap

M
od

e

P
pr

A
ut

oR
sp

A
on

B
lk

S
to

p
M

rk
E

n

M
ar

cE
n

P
pr

A
ut

oR
sp

E
n

P
ri

vA
br

tE
n

D
ev

T
b

lS
eg

E
n

D
ua

lE
ve

nt
Lo

gE
n

31 30 29 28 27 25 24 23 22 21 18 17 16 15 14 13 12 11 10 9 8 7 5 4 3 2 1 0

D
ua

lP
pr

Lo
gE

n

G
A

In
tE

n

G
A

Lo
gE

n

GAMEn

S
m

iF
Lo

gE
n

S
lfW

B
di

s

S
m

iF
E

n

CRW

G
A

E
n

G
T

E
n

P
P

R
E

n

P
pr

In
tE

n

P
P

R
Lo

gE
n

C
m

dB
uf

E
n

Is
oc

C
oh

er
en

t

R
es

P
as

sP
W

P
a

ss
P

W

In
vT

im
eO

u
t

C
om

W
ai

tIn
tE

n

E
ve

nt
In

tE
n

E
ve

nt
L

og
E

n

H
tT

un
E

n

Io
m

m
uE

n

Bits Description

63:61 SNPAVICEn: Controls guest virtual APIC mode when the system is SNP-enabled. Supported modes are
indicated through MMIO Offset 01A0h[SNPAVICSup].
Refer to Table 21, “Interrupt Virtualization Controls for Upstream Interrupts” on page 93 for details on the
support device interrupt configuration modes.

60 GstBufferTRPMode: Controls how IOMMU computes the Base pointer of the vIOMMU accelerated Guest
Buffers (Event, Command, PPR etc.) Software may detect the presence of this feature by checking that this
register bit is writable.
0 = IOMMU will calculate base address of vIOMMU Guest Buffer algorithmically in the IOMMU Private
Space. The IOMMU Private PA will then be translated to System PA using IOMMU v1 page tables.
1 = GuestX VF Control MMIO Offsets will contain Guest Physical Address of the buffers base address.
See Section 3.5 [IOMMU Virtual Function Controls MMIO Registers].

59 IRTCacheDis: 1=Disable IRTE caching. When caching is disabled, software may modify IRTEs in memory
without issuing INVALIDATE_INTERRUPT_TABLE commands. Writing this register to 1 does not invalidate
prior cached IRTEs. Software must invalidate those using appropriate invalidation commands.
Software may detect the presence of this feature by checking that this register bit is writable.

58 GCR3TRPMode:
0: GCR3 Table Root Pointer inside DTE is System Physical Address.
1: GCR3 Table Root Pointer inside DTE is Guest Physical Address. The GPA must be translated by IOMMU
using nested page tables to system physical addresses.
See Section 2.2.3 [I/O Page Tables for Host Translations].

57 Reserved.

56 TMPMEn: Enables support for Tiered Memory Page Migration Support inside IOMMU.

55 GAPPIEn: Guest APIC Physical Processor Interrupt Enable. RW. Reset: 0b. 1= Writing to the GALog when
handling a guest interrupt to a non-running guest may be selectively suppressed on a per-IRTE basis. 0 = Guest
interrupts to non-running guests are recorded in GALog entries. See Section 2.2.5.4 [Guest APIC Physical
Processor Interrupt] on page 99.

[AMD Public Use]

212 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

54 GAUpdateDis: Disable hardware update access bit in guest page table.

53 vIommuEn: Enable virtualized IOMMU.

52 vCmdEn: Enable virtualized command buffer processing.

51 IntCapXTEn: Enable IOMMU x2APIC interrupts generation. When MMIO Offset 0030h[XTSup]=0, this
field is reserved.

50 XTEn: Enable X2APIC. When MMIO Offset 0030h[XTSup]=0, this field is reserved.

49 Reserved.

48 GDUpdateDis: Disable hardware updating dirty bit in guest page table.

47:46 HADUpdate: Access and Dirty bit update in host page table.

45 EPHEn: Enhanced Peripheral Page Request Handling.
RW. Reset:0b, 1: Enhanced Peripheral Page Request Handling, if supported, is enabled.
When MMIO Offset 0030h[EPHSup]=0, this field is reserved.

44:43 NumIntRemapMode: Controls remapping behavior for MSI interrupts.
00b = Enables remapping up to 512 interrupts per function.
01b = Enables remapping up to 2048 interrupts per function.
All other encodings reserved.
See Table 19 on page 90 for activation controls.

42 PprAutoRspAon: Peripheral Page Request Auto Response – Always On feature enable. RW. Reset: 0b.
0 = PPR Auto Response – Always On feature is disabled. Enabling the PPR Auto Response – Always On
feature requires setting this bit and PprAutoRspEn. When MMIO Offset 0030h[PprAutoRespSup] = 0, this field
is reserved. See Section 2.6.4.4 [PPR Auto Response Always-on] on page 183.

41 BlkStopMrkEn. Block StopMark messages feature Enable RW. Reset: 1b. This feature, when supported, is
enabled by default. When MMIO Offset 0030h[BlkStopMrkSup] = 0. this field is reserved. See Section 2.6.4.5
[Block StopMark Messages] on page 183.

40 MarcEn: Memory Address Routing and Control feature Enable. RW. Reset: 0b.
0 = MARC disabled. 1 = MARC is enabled. When MMIO Offset 0030h[MarcSup] = 00b, this field is reserved.
See Section 2.9 [Memory Address Routing and Control (MARC)] on page 189.

39 PprAutoRspEn: Peripheral Page Request Automatic Response feature Enable. RW. Reset: 0b.
0 = PPR auto response is disabled. 1 = PPR auto response, if supported, is enabled. When MMIO Offset
0030h[PprAutoRespSup] = 0, this field is reserved. See Section 2.6.4.1 [PPR Auto Response] on page 182.

38:37 PrivAbrtEn: Privilege abort enable. RW. Reset: 00b. 00b = IOMMU will abort any access request to a guest
supervisor page when the PMR bit of the PCIe TLP prefix indicates a non-privileged (user mode) request. 01b =
IOMMU will abort any access request to a guest supervisor page regardless of the setting of the PMR bit. Values
10b and 11b are reserved. When MMIO Offset 0030h[USSup] = 0, this field is reserved. See Section 2.2.6.2
[AMD64 Guest Page Table Access Protection] on page 100.

36:34 DevTblSegEn: Device Table Segmentation Enable. RW. Reset: 000b.
000b = Device Table is not segmented.
001b = Device Table divided into 2 segments.
010b = Device Table divided into 4 segments.
011b = Device Table divided into 8 segments.
100b–111b = Reserved.
When MMIO Offset 0030h[DevTblSegSup] = 00b, this field is reserved. This field must not be set to a value
greater than the value of DevTblSegSup. See Section 2.2.2.3 [Device Table Segmentation] on page 78.

Bits Description

[AMD Public Use]

Registers 213

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

33:32 DualEventLogEn: Dual Event Log Enable. RW. Reset: 00b.
00b = Use the default (A) Event Log buffer.
01b = Use the alternate (B) buffer.
10b = Automatically swap buffers as the currently active buffer becomes full.
11b = Reserved.
Note: If the overflow bit of the buffer to be swapped to is set, event logging ceases. When MMIO Offset
0030h[DualEventLogSup] = 00b, this field is reserved. See Section 2.5.17 [Event Log Dual Buffering] on
page 174.

31:30 DualPprLogEn: Dual Peripheral Page Request Log Enable. RW. Reset: 00b.
00b = Use the default (A) Peripheral Page Request Log.
01b = Use the alternate (B) Peripheral Page Request Log.
10b = Automatically swap logs as the currently active log becomes full.
11b = Reserved.
Note: If the overflow bit of the log to be swapped to is set when a log swap about to occur, an error occurs.
Note: If auto-response is enabled (auto-response is enabled if either bit 39 or 42 of the IOMMU Control
Register [MMIO Offset 0018h] is set to 1), PprLogEn must not be set to 10b.
When MMIO Offset 0030h[DualPPRLogSup] = 00b, this field is reserved. See Section 2.6.1 [PPR Log Dual
Buffering] on page 177.

29 GAIntEn: Guest virtual APIC interrupt enable. RW. Reset 0b. 0 = An interrupt is not signalled when MMIO
Offset 2020h[GALogInt] changes from 0 to 1. 1 = An interrupt is signaled when MMIO Offset
2020h[GALogInt] changes from 0 to 1 using Capability Offset 14h[MsiNumGA]. Writes to this bit are ignored
when MMIO Offset 0030h[GASup] = 0.

28 GALogEn: Guest virtual APIC GA Log Enable. RW. Reset 0b. 0 = Disable guest vAPIC virtual interrupt
request logging. (GA Logging). 1 = Enable GA Logging. See Section 2.7 [Guest Virtual APIC (GA) Logging].
Writes to this bit are ignored when MMIO Offset 0030h[GASup] = 0.

27:25 GAMEn: Guest virtual APIC mode enabled. RW. Reset 000b. This field specifies advanced interrupt behaviors
and the size of the IRTE.

000b = Interrupt remapping behavior as defined in Section 2.2.5.2 [Interrupt Virtualization Tables with Guest
Virtual APIC Enabled]. Upstream interrupts are remapped using the IRTE entries defined by Figure 17 on
page 95 and Table 22 on page 95.

001b = Virtual interrupt behavior as defined by the Guest Virtual APIC specification in APM2 and Section
2.2.5.2 [Interrupt Virtualization Tables with Guest Virtual APIC Enabled]. Upstream interrupts are remapped
using the IRTE entries defined by Table 21 on page 93 and Table 23 on page 96.

010b-111b = reserved values.
Writes to this field are ignored when MMIO Offset 0030h[GASup] = 0.

24 SmiFLogEn: SMI filter log enable. RW. Reset 0b. Defines if SMI interrupts blocked by the SMI filter are
logged by the IOMMU.
0 = SMI interrupts blocked by the SMI filter are not logged.
1 = SMI interrupts blocked by the SMI filter are reported in the IOMMU event log.
See also Section 2.5.3 [IO_PAGE_FAULT Event].
Note: SmiFLogEn controls event log entry creation by the SMI filter; the SA, SE, IG, and SupIOPF bits operate
independently on interrupts processed through the interrupt remapping filter (see Table 7 on page 66 and
Table 20 on page 91).
When MMIO Offset 0030h[SmiFSup] = 0b, this bit is ignored by hardware and may be implemented as a read-
only value of 0b.

Bits Description

[AMD Public Use]

214 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

23 SlfWBdis: Self Writeback Disable.

22 SmiFEn: SMI filter enable. Defines how SMI interrupts are handled by the IOMMU.
0 = SMI interrupts are always passed upstream without modification.
1 = SMI interrupts are blocked unless otherwise controlled by the SMI filter registers.
Blocked SMI interrupts are reported in the IOMMU event log as governed by SmiFLogEn. See also Section
2.1.5.1 [SMI Filter Operation].
When MMIO Offset 0030h[SmiFSup] = 0b, SmiFEn is ignored by hardware and may be implemented as a read-
only value of 0b.

21:18 CRW: RO. Reset 0h. Reserved. Intended for future use.
Software Note: Software may safely write 0h to this field, but should ignore the value read.

17 GAEn: Guest virtual APIC enable. RW. Reset 0b. 0 = Guest virtual APIC feature for device interrupt
virtualization is not enabled. 1 = device interrupts are updated using the Guest Virtual APIC Table Root Pointer
in the DTE and are posted to the processors. Writes to this bit are ignored when MMIO Offset 0030h[GASup] =
0. See Section 1.3.7 [AMD64 Interrupt Virtualization(Guest Virtual APIC Interrupt Controller)].

16 GTEn: Guest translation enable. RW. Reset 0b. 0 = Guest translation disabled. 1 = Guest translation may be
enabled for a peripheral by programming DTE[GV] (see Table 7 on page 66). When guest translation is
enabled, invalidation semantics are changed (see Section 1.3.2 [Enhanced Processor Page Table
Compatibility]). Writes to this bit are ignored when MMIO Offset 0030h[GTSup] = 0.

15 PPREn: Peripheral page request processing enable. RW. Reset 0b. 1 = Peripheral page requests are processed. 0
= PPR requests are treated as invalid device requests (see Section 2.5.9 [INVALID_DEVICE_REQUEST
Event]). Writes to this bit are ignored when MMIO Offset 0030h[PPRSup] = 0.

14 PprIntEn: Peripheral page request interrupt enable. RW. Reset 0b. 1 = An interrupt is signalled when MMIO
Offset 2020h[PPRLogInt] = 1 using Capability Offset 10h[MsiNumPPR]. 0 = An interrupt is not signalled
when MMIO Offset 2020h[PPRLogInt] = 1. Writes to this bit are ignored when MMIO Offset 0030h[PPRSup]
= 0.

13 PPRLogEn: Peripheral page request log enable. RW. Reset 0b. 1 = The PPR Log Base Address Register
[MMIO Offset 0038h] has been configured and peripheral page request events are written to the peripheral page
request log when IommuEn has also been set. Writing a 1 to this bit when MMIO Offset 2020h[PPRLogRun] =
1b has no effect. 0 = Peripheral page request logging is not enabled. Peripheral page requests are discarded
when the peripheral page request log is not enabled or when MMIO Offset 0030h[PPRSup] = 0.
When IommuEn = 1b and PPREn = 1b, if software writes PPRLogEn with 1b, the IOMMU clears the
PPRLogOverflow bit and sets the PPRLogRun bit in the IOMMU Status Register [MMIO Offset 2020h]. The
IOMMU can now write new entries to the event log if there are usable entries available.
Note: writes to this bit are ignored when MMIO Offset 0030h[PPRSup] = 0.
Software Note: software can read MMIO Offset 2020h[PPRLogRun] to determine the status of peripheral page
request log writing by the IOMMU.
Note: the peripheral page request log and event log are independent.
Software Note: the PPR Log Base Address Register [MMIO Offset 0038h], the IOMMU PPR Log Head
Pointer Register [MMIO Offset 2030h], and the IOMMU PPR Log Tail Pointer Register [MMIO Offset 2038h]
must be set prior to enabling the event log.

Bits Description

[AMD Public Use]

Registers 215

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

12 CmdBufEn: Command buffer enable. RW. Reset 0b. 1 = Start or restart command buffer processing. When
CmdBufEn = 1b and IommuEn = 1b, the IOMMU starts fetching commands and sets MMIO Offset
2020h[CmdBufRun] to 1b. Writing a 1b to CmdBufEn when CmdBufRun = 1b has no effect. 0 = Halt command
buffer processing. Writing a 0 to CmdBufEn causes the IOMMU to cease fetching new commands although
commands previously fetched are completed. The IOMMU stops fetching commands upon reset and after
events as specified in Section 2.5 [Event Logging]. See MMIO Offset 2020h[CmdBufRun].
Note: see IOMMU Status Register [MMIO Offset 2020h] to determine the status of command buffer processing.
Note: writing of event log entries is independently controlled by EventLogEn.
Software Note: the Command Buffer Base Address Register [MMIO Offset 0008h], the Command Buffer Head
Pointer Register [MMIO Offset 2000h], and the Command Buffer Tail Pointer Register [MMIO Offset 2008h]
must be set prior to enabling the IOMMU command buffer processor.

11 Isoc: Isochronous. RW. Reset 0b. This bit controls the state of the isochronous bit in the HyperTransport™ read
request packet when the IOMMU issues I/O page table reads and Device Table reads on the HyperTransport™
link. 1 = Request packet to use isochronous channel. 0 = Request packet to use standard channel.
Note: Platform firmware should set this bit to 1b for processors that support the isochronous channel.

10 Coherent:: Coherent. RW. Reset 1b. This bit controls the state of the coherent bit in the HyperTransport™ read
request packet when the IOMMU issues Device Table reads on the HyperTransport™ link. 1 = Device table
requests are snooped by the processor. 0 = Device table requests are not snooped by the processor. See SD in
Table 7 on page 66.

9 ResPassPW: Response pass posted write. RW. Reset 0b. This bit controls the state of the ResPassPW bit in the
HyperTransport™ read request packet when the IOMMU issues I/O page table reads and Device Table reads on
the HyperTransport™ link. 1 = Response may pass posted requests. 0 = Response may not pass posted requests.

8 PassPW: Pass posted write. RW. Reset 0b. This bit controls the state of the PassPW bit in the HyperTransport™
read request packet when the IOMMU issues I/O page table reads and Device Table reads on the
HyperTransport™ link. 1 = Request packet may pass posted requests. 0 = Request packet may not pass posted
requests.

7:5 InvTimeOut: Invalidation time-out. RW. Reset 000b. This field specifies the invalidation time-out for IOTLB
invalidation requests.
000b No time-out001b 1 ms
010b 10 ms011b 100 ms
100b 1 sec.101b 10 sec.
110b 100 sec.111b reserved

4 ComWaitIntEn: Completion wait interrupt enable. RW. Reset 0b. 1 = An interrupt is signalled when MMIO
Offset 2020h[ComWaitInt] = 1 using Capability Offset 10h[MsiNum].

3 EventIntEn: Event log interrupt enable. RW. Reset 0b. 1 = An interrupt is signalled when MMIO Offset
2020h[EventLogInt] = 1 or when MMIO Offset 2020h[EventOverflow] = 1 using Capability Offset
10h[MsiNum].

Bits Description

[AMD Public Use]

216 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

2 EventLogEn: Event log enable. RW. Reset 0b. 1 = The Event Log Base Address Register [MMIO Offset
0010h] has been configured and all events detected are written to the event log when IommuEn has also been
set. Writing a 1b to this bit when EventLogEn = 1b has no effect. 0 = Event logging is not enabled. Events are
discarded when the event log is not enabled.
When IommuEn = 1b and software changes EventLogEn from 0b to 1b, the IOMMU clears the EventOverflow
bit and sets the EventLogRun bit in the IOMMU Status Register [MMIO Offset 2020h]. The IOMMU can now
write new entries to the event log if there are usable entries available.
Software Note: software can read MMIO Offset 2020h[EventLogRun] to determine the status of event log
writing by the IOMMU.
Note: the fetching of commands is independently controlled by CmdBufEn.
Software Note: the Event Log Base Address Register [MMIO Offset 0010h], the Event Log Head Pointer
Register [MMIO Offset 2010h], and the Event Log Tail Pointer Register [MMIO Offset 2018h] must be set
prior to enabling the event log.

1 HtTunEn: HyperTransport™ tunnel translation enable. RW. Reset 0b. 1 = Upstream traffic received by the
HyperTransport™ tunnel is translated by the IOMMU. 0 = Upstream traffic received by the HyperTransport™
tunnel is not translated by the IOMMU. The IOMMU ignores the state of this bit while IommuEn = 0. See the
HtTunnel bit in the IOMMU Capability Header [Capability Offset 00h].

0 IommuEn: IOMMU enable. RW. Reset 0b.
1 = IOMMU enabled. All upstream transactions are processed by the IOMMU. The Device Table Base Address
Register [MMIO Offset 0000h] must be configured by software before setting this bit.
0 = IOMMU is disabled and no upstream transactions are translated or remapped by the IOMMU. When
disabled, the IOMMU reads no commands and creates no event log entries.

Bits Description

[AMD Public Use]

Registers 217

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register specifies the base DVA of the IOMMU exclusion range. Device accesses that target
addresses in the exclusion range are neither translated nor access checked if the EX bit in the Device
Table is set for the device or if the Allow bit is set in this register. Note that the exclusion range test is
not applied to device transactions presenting a valid PASID TLP Prefix.

A translation request for which the IOMMU exclusion range applies and I = 1b in the Device Table
entry returns R = 1, W = 1, and a physical address that equals the requested virtual address. The
response to a multi-page translation request in the IOMMU exclusion range is implementation-spe-
cific.

Software Note: A peripheral using a remote IOTLB may cache the results of a translation request to
the exclusion range, so an INVALIDATE_IOTLB_PAGES command must be issued after changing the
IOMMU exclusion range.

MMIO Offset 0020h IOMMU Exclusion Base Register / Completion Store Base Register

63 52 51 32

Reserved Exclusion Base Address[51:32]

31 12 11 2 1 0

Exclusion Base Address[31:12] Reserved

A
ll

ow

E
xE

n

Bits Description

63:52 Reserved.

51:12 Exclusion range base address. RW. Reset 00_0000_0000h. Specifies bits [51:12] of the 4Kbyte-aligned base
address of the exclusion range.
When the system is SNP-enabled, the contents of the Exclusion range base address field are locked and re-
purposed as the Completion store base address field. This contains bits [51:12] of the 4Kbyte-aligned base
address that defines the starting address range that host COMPLETION_WAIT stores may target.

11:2 Reserved.

1 Allow: Allow all devices. RW. Reset 0b. 1 = All accesses to the exclusion range are forwarded untranslated. 0 =
The EX bit in the Device Table entry specifies if accesses to the exclusion range are translated.
This field must be set to 0 prior to and after making the system SNP-enabled.

0 ExEn: Exclusion range enable. RW. Reset 0b. 1 = The exclusion range is enabled. 0 = the exclusion range is
disabled.
This field must be set to 0 prior to and after making the system SNP-enabled.

[AMD Public Use]

218 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register specifies the limit of the IOMMU exclusion range. The lower 12 bits of the limit are
treated as FFFh for range comparisons.

Note: When the exclusion base address equals the exclusion limit address, the exclusion range is
4 KB.

MMIO Offset 0028h IOMMU Exclusion Range Limit Register / Completion Store Limit Register

63 52 51 32

Reserved Exclusion Limit[51:32]

31 12 11 2 1 0

Exclusion Limit[31:12] Reserved

Bits Description

63:52 Reserved.

51:12 Exclusion range limit. RW. Reset 00_0000_0000h. Specifies bits [51:12] of the upper limit of the exclusion
range.
When the system is SNP-enabled, the contents of the Exclusion range limit field are locked and repurposed as
the Completion store limit field. Bits 11:0 of the completion store limit address are treated as F_FFh. The
completion store limit address defines the upper address range that host COMPLETION_WAIT stores may
target.

11:0 Reserved.

[AMD Public Use]

Registers 219

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register specifies the extended features supported by the IOMMU.
Note: when Capability Offset 00h[EFRSup] = 0b, this register is reserved and the features described
by it are not supported by the IOMMU.

MMIO Offset 0030h IOMMU Extended Feature Register

63 62 61 60 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 32

S
N

P
S

up

F
or

ce
P

hy
D

es
tS

up

 G
A

U
pd

a
te

D
is

S
up

Reserved

vI
om

m
uS

up

In
vI

ot
lb

Ty
pe

S
u

p

R
es

er
ve

d

H
D

S
up

A
ttr

F
W

S
u

p

E
P

H
S

up

 H
A

S
up

G
IO

S
up

R
es

er
ve

d

M
si

C
ap

M
m

io
S

up

P
er

fO
pt

S
up

B
lk

S
to

pM
rk

S
up

M
a

rc
S

u
p

P
P

R
A

ut
oR

sp
S

up

P
P

R
E

a
rl

yO
F

S
u

p

D
ev

T
bl

S
eg

S
up

U
S

S
up

PASmax[4:0]

31 30 29 28 27 26 25 24 23 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S
A

T
S

S
up

R
es

er
ve

d

D
ua

lE
ve

nt
L

og
S

up

R
es

er
ve

d

D
ua

lP
pr

Lo
gS

up

GAMSup SmiFRC

S
m

iF
S

up

G
L

X
S

u
p

GATS HATS

P
C

S
up

H
E

S
up

G
A

S
u

p

IA
S

up

G
A

P
P

IS
up

G
T

S
up

N
X

S
up

X
T

S
up

P
P

R
S

up

P
re

F
S

u
p

Bits Description

63 SNPSup: Secure Nested Paging support. RO.
1=SEV-SNP supported
0=SEV-SNP not supported
SEV-SNP is only supported at the system level if both the CPU and IOMMU support the feature.

62 ForcePhyDestSup: Force Physical Destination Mode for Remapped Interrupt Support. RO. 1= feature
supported. 0 = feature not supported. When this bit is set, OS or host must program the DM bit to 0b in the IRTE
and program the destination field to the physical APIC ID of the thread to which the interrupt should be
delivered.

61 GAUpdateDisSup: Support disabling hardware update on guest page table access bit. RO. 1= feature
supported. 0 = feature not supported.

60:56 Reserved.

55 vIommuSup: virtualized IOMMU support. RO. 1=feature supported. 0=feature not supported.

54 InvIotlbTypeSup: Invalidate IOTLB Type Support. RO. 1=feature supported. 0=feature not supported. See
Section 2.4.4 INVALIDATE_IOTLB_PAGES.

53 Reserved.

52 HDSup: Host Dirty Support. RO. 1 = feature supported. 0 = feature not supported. See Section 2.2.3.2 [Host
Dirty Support] on page 88. The Host Access feature must be supported if the IOMMU supports the Host Dirty
feature.

51 AttrFWSup: Attribute Forward Support. RO. 1=feature supported. 0=feature not supported. See Section
2.2.7.11 Extended Coherency Attributes.

50 EPHSup: Enhanced PPR Handling Support. RO. 1=feature supported. 0=feature not supported. See Section
2.6.4.1 PPR Auto Response and Section 2.5.10 INVALID_PPR_REQUEST.

49 HASup: Host Access Support. RO. 1 = feature supported. 0 = feature not supported.
See Section 2.2.3.1 [Host Access Support] on page 87.

[AMD Public Use]

220 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

48 GIoSup: Guest I/O Protection Support. RO. 1= feature supported. 0 = feature not supported.
See Section 2.2.7.9 [Calculating Non-Snoop Accesses Attribute for an ATS Response] on page 119.

47 Reserved.

46 MsiCapMmioSup: MSI Capability Register MMIO access Support. RO. 1 = feature supported. 0 = feature not
supported. See Section 3.4.8 [MMIO Access to MSI Capability Block Registers] on page 234.

45 PerfOptSup: IOMMU performance optimization feature. RO. 1 = feature supported. 0 = feature not supported.
See IOMMU Performance Optimization Control Register [MMIO Offset 016Ch].

44 BlkStopMrkSup: Block StopMark messages feature Support. RO.
1 = feature is supported. 0 = feature is not supported.

43:42 MarcSup: Memory Access Routing and Control feature support. RO. Specifies the number of MARC apertures
and thus the number of MARC register 3-tuples supported.
00b = MARC feature not supported.
01b = Four MARC register 3-tuples are supported.
10b = Eight MARC register 3-tuples are supported.
11b = Reserved.

41 PPRAutoRspSup:PPR Automatic Response Support. RO. 1 = feature is supported. 0 = feature is not supported.

40 PprOvrflwEarlySup: PPR Log Overflow Early Warning Support. RO.
1 = feature is supported. 0 = feature is not supported.

39:38 DevTblSegSup: Segmented Device Table feature support. RO. Specifies the number of IOMMU Device Table
segments supported. Number of Device Table segments supported = 2 ^^ DevTblSegSup[1:0].

37 USSup: 1 = User / supervisor page protection feature supported. 0 = feature not supported. See Section 2.2.6.2
[AMD64 Guest Page Table Access Protection] on page 100 for more information on this feature.

36:32 PASmax[4:0]: Maximum PASID supported. RO. Reset X_XXXXb. The maximum PASID value supported is
equal to 2PASmax−1.
00h = 1-bit PASID01h = 2-bit PASID
02h = 3-bit PASID03h = 4-bit PASID
04h = 5-bit PASID05h = 6-bit PASID
......
0Eh = 15-bit PASID0Fh = 16-bit PASID
10h = 17-bit PASID11h = 18-bit PASID
12h = 19-bit PASID13h = 20-bit PASID
14h-1Fh = Reserved
This value is not meaningful when MMIO Offset 0030h[GTSup] = 0.

31 SATSSup: Secure ATS Support. RO. Resert Xb. 1 = IOMMU supports processing ATS requests as either secure
or non-secure ATS requests as controlled by DTE[SATS]. 0 = IOMMU does not support processing ATS
requests as secure ATS requests.

30 Reserved.

29:28 DualEventLogSup: Dual Event Log Support.
00b = Event log dual buffer not supported.
01b = Event log dual buffer supported without autoswap.
10b = Event log dual buffer autoswap supported.
11b = Reserved.

27:26 Reserved.

Bits Description

[AMD Public Use]

Registers 221

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

25:24 DualPprLogSup: Dual PPR Log Support.
00b = PPR log dual buffer not supported.
01b = PPR log dual buffer supported without autoswap.
10b = PPR log dual buffer autoswap supported.
11b = Reserved.

23:21 GAMSup[2:0]: Guest virtual APIC modes supported. RO. Reset XXXb. Indicates the advanced virtual
interrupt controller features supported.
000b = No advanced interrupt features supported (interrupt remapping only).
001b = Guest Virtual APIC supported.
010b-111b = Reserved.
See Table 21 on page 93 for activation controls.

20:18 SmiFRC[2:0]: SMI filter register count. RO. Reset XXXb. Indicates the number of SMI filter registers
supported in hardware.
000b = 1 filter register011b = 8 filter registers
001b = 2 filter registers100b = 16 filter registers
010b = 4 filter registers
101b-111b = Reserved
This value is not meaningful when MMIO Offset 0030h[SmiFSup] = 00b.

17:16 SmiFSup[1:0]: SMI filter register supported. RO. Reset XXb. Specifies that SMI interrupts may be filtered.
00b = SMI interrupts are always passed-through. 01b = SMI interrupts are filtered under the control of MMIO
Offset 0018h[SmiFEn] and the contents of the SMI filter registers. 10b and 11b are reserved values.

15:14 GLXSup: Guest CR3 root table level supported. RO. Reset XXb. Specifies the maximum number of levels
supported in a guest CR3 root table. 00b = single-level Guest CR3 base table address translation is supported.
01b = Two-level GCR3 base address table is supported in hardware. 10b = Three-level GCR3 base address table
is supported in hardware. 11b is reserved.
The value of GLXSup is not meaningful when MMIO Offset 0030h[GTSup] = 0. See Table 11 on page 75.

13:12 GATS[1:0]: Guest Address Translation Size. RO. Reset XXb. The maximum number of translation levels
supported for guest address translation (GVA). This value is not meaningful when MMIO Offset
0030h[GTSup] = 0.
00b = 4 levels (PML4E)01b = 5 levels
01b = 5 levels (PML5E)
10b = 6 levels11b = Reserved
See also Figure 33 on page 108 and Table 30 on page 109.

11:10 HATS[1:0]: Host Address Translation Size. RO. Reset XXb. The maximum number of host address translation
levels supported.
00b = 4 levels01b = 5 levels
10b = 6 levels11b = Reserved
This field sets an implementation limit on the value of DTE[Mode] in Table 7 on page 66 and sets an
implementation limit on the value of Next Level in Figure 9 on page 82 and Figure 10 on page 84. See also
Figure 40 on page 113.

9 PCSup: Performance counters supported. RO. Reset Xb. 0 = no performance counters are supported. 1 =
performance counters are supported (see IOMMU Counter Configuration Register [MMIO Offset 4000h] and
Section 3.4.22.1 [MMIO Event Counter Control Registers]).

Bits Description

[AMD Public Use]

222 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

8 HESup: Hardware Error registers supported. RO. Reset Xb. 0 = Hardware error registers do not report error
information. 1 = Error information is reported in hardware error registers (see I/O Hardware Event Reporting
Registers [2.5.16.2]).

7 GASup: Guest Virtual APIC Support. RO. Reset Xb. 1 = guest virtual APIC is supported. 0 = feature is not
supported. See GAMSup for modes supported. See MMIO Offset 0018h[GAEn] to enable the feature.

6 IASup: INVALIDATE_IOMMU_ALL supported. RO. Reset Xb. 1 = The INVALIDATE_IOMMU_ALL
command is supported. 0 = The INVALIDATE_IOMMU_ALL command is not supported and will generate an
error when used.

5 GAPPISup: Guest APIC Physical Processor Interrupt Support. RO. Reset Xb. 1 = Guest APIC Physical
Interrupt feature is supported. 0 = Guest APIC Physical Interrupt feature is not supported.

4 GTSup: Guest translations supported. RO. Reset Xb. 1 = guest address translation is supported. 0 = only nested
address translation is supported. When GTSup = 0, the following values in the DTE must be zero: GV, GLX,
and GCR3 Table Root Pointer. See also MMIO Offset 0018h[GTEn].

3 NXSup: EXE (PMR) and PRIV supported. RO. Reset Xb. 1 = no-execute protection (EXE, PMR) and privilege
level are supported. 0 = no-execute protection (EXE, PMR) and privilege level are not supported. See Section
2.2.7.7 [PCIe® TLP PASID Prefix].

2 XTSup: x2APIC support. RO. Reset Xb. 1 = the interrupt remapping table supports x2APIC. 0 = No x2APIC
interrupt being supported.

1 PPRSup: Peripheral page request support. RO. Reset Xb. 1 = Indicates the IOMMU handles page service
request events from peripherals, the IOMMU supports the page service request log, and that the second
IOMMU interrupt can be used to signal peripheral page request events. 0 = peripheral page requests are not
supported, the peripheral page request log is not supported, and the PPR interrupt is not generated by the
IOMMU.

0 PreFSup: Prefetch support. RO. Reset Xb. 1 = Indicates IOMMU will accept PREFETCH_IOMMU_PAGES
commands (see Section 2.4.6 [PREFETCH_IOMMU_PAGES]). 0 = IOMMU treats
PREFETCH_IOMMU_PAGES commands as invalid commands.

Bits Description

[AMD Public Use]

Registers 223

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3.4.2 PPR Log Registers

This register specifies the system physical address and length of the peripheral page request log.
Peripheral requests for page service handling are converted to entries in the PPR log.

This register is reserved when Capability Offset 00h[EFRSup] = 0b or when MMIO Offset
0030h[PPRSup] = 0b. Page service requests detected by the IOMMU are reported in the event log
(see Section 2.5.3 [IO_PAGE_FAULT Event]).

If PPRLogLen or PPRLogBase is changed while the PPRLogRun = 1, the IOMMU response is unde-
fined.

MMIO Offset 0038h PPR Log Base Address Register

63 60 59 56 55 52 51 32

Reserved PPRLogLen Reserved PPRLogBase

31 12 11 0

PPRLogBase Reserved

Bits Description

63:60 Reserved.

59:56 PPRLogLen: Peripheral page request log length. RW. Reset 1000b. Specifies the length of the PPR log in
power of 2 increments. The minimum size is 256 entries (4 Kbytes); values less than 1000b are reserved.
0000b - 0111b = Reserved
1000b = 256 entries (4 Kbytes)
1001b = 512 entries (8 Kbytes)
...
1111b = 32768 entries (512 Kbytes)

55:52 Reserved

51:12 PPRLogBase: Peripheral page request log base address. RW. Reset 00_0000_0000h. Specifies bits [51:12] of
the base address of the PPR log. The base address must be aligned to 4 Kbytes.

11:0 Reserved

[AMD Public Use]

224 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register contains the upper 64-bits or the most recent hardware event detected by the IOMMU. If
MMIO Offset 0030h[HESup] = 0, this and the following two registers are reserved.

This register contains the lower 64-bits of the most recent hardware event detected by the IOMMU.

MMIO Offset 0040h IOMMU Hardware Event Upper Register

63 60 59 32

EventCode[3:0] First event code dependent operand[59:32]

31 0

First event code dependent operand[31:0]

Bits Description

63:60 EventCode[3:0]: RW. Reset 0000b. See Figure 54 on page 142.

59:0 First event code dependent operand[59:0]: RW. Reset 000_0000_0000_0000h. See
Figure 54.

MMIO Offset 0048h IOMMU Hardware Event Lower Register

63 32

Second event code dependent operand[63:32]

31 19 18 4 3 0

Second event code dependent operand[31:0]

Bits Description

63:0 Second event code dependent operand[59:0]: RW. Reset 0000_0000_0000_0000h. See Figure 54 on
page 142.

[AMD Public Use]

Registers 225

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register contains information about the hardware event detected by the IOMMU.

3.4.3 SMI Filter

These registers filter the delivery of system management interrupts governed by MMIO Offset
0018h[SmiFEn] and MMIO Offset 0030h[SmiFSup]. Information about a discarded SMI may be
written to the event log as controlled by MMIO Offset 0018h[SmiFLogEn] (see Section 2.5.3
[IO_PAGE_FAULT Event]).

Up to 16 64-bit SMI filter registers are supported; the number of SMI filter registers implemented by
the hardware is reported in MMIO Offset 0030h[SmiFRC]. Unimplemented registers beyond those
specified by SmiFRC return 0 when read and written data is ignored. SMI filter register 0 is the first
implemented register, if any. All implemented SMI filter registers have the same behavior and are
contiguous (see Table 78).

MMIO Offset 0050h IOMMU Hardware Event Status Register

63 32

Reserved

31 19 18 4 3 0

Reserved

H
E

O

H
E

V

Bits Description

63:2 Reserved.

1 HEO: Hardware Event Overflow. RW1C. Reset 0. 1 = The hardware event log has overflowed. An event was
generated when HEV was already set to 1. The event information could not be stored in the hardware event
registers.

0 HEV: Hardware Event Valid. RW1C. Reset 0. Defines the contents of the IOMMU hardware event registers as
valid. 0 = register contents not valid. 1 = contents valid.

MMIO Offset 00[60-D8]h IOMMU SMI Filter Register

[AMD Public Use]

226 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

3.4.4 Guest Virtual APIC Log Registers

This register specifies the system physical address and length of the guest virtual APIC log. Guest vir-
tual interrupt requests processed while IRTE[IsRun] = 0b are reported as 64-bit entries in the guest
virtual APIC log (see Section 2.7 [Guest Virtual APIC (GA) Logging]). This register is reserved

63 32

Reserved

31 18 17 16 15 0

Reserved

S
m

iF
L

oc
k

S
m

iD
V

SmiDID[15:0]

Bits Description

63:18 Reserved.

17 SmiFLock: SMI filter lock. RW. Reset 0b. Locks the value of the containing SMI filter register. 0b = other
fields in the SMI filter register can be read and written. 1b = all fields of the containing SMI filter register are
read-only. Once written to a 1b, SmiFLock can only be changed to 0b by a system reset.

16 SmiDV: SMI device ID valid. RW. Reset 0b. Indicates that SmiDID is valid for matching purposes. 0b =
SmiDID is not valid and any match results are ignored. 1b = SmiDID is a valid DeviceID and a comparison of
SmiDID with the SMI interrupt DeviceID is meaningful. This bit is locked read-only by SmiFLock.

15:0 SmiDID[15:0]: SMI device ID. RW. Reset 0000h. Treated as a DeviceID when SmiDV indicates the field is
valid. When SMI filtering is enabled for the containing SMI filter register, the SmiDID is compared to the
DeviceID of an incoming SMI interrupt. When they match, the SMI interrupt is passed upstream without
change. If none of the SMI filter registers indicate a valid match of the DeviceID of an upstream SMI interrupt,
the SMI interrupt is discarded and is optionally reported in the IOMMU event log (see MMIO Offset
0018h[SmiFLogEn]).This field is locked read-only by SmiFLock.

Table 78: SMI Filter Register MMIO Offset Assignments

SMI Filter Register Name MMIO Offset SMI Filter Register Name MMIO Offset

SMI Filter Register 0 0060h SMI Filter Register 8 00A0h

SMI Filter Register 1 0068h SMI Filter Register 9 00A8h

SMI Filter Register 2 0070h SMI Filter Register 10 00B0h

SMI Filter Register 3 0078h SMI Filter Register 11 00B8h

SMI Filter Register 4 0080h SMI Filter Register 12 00C0h

SMI Filter Register 5 0088h SMI Filter Register 13 00C8h

SMI Filter Register 6 0090h SMI Filter Register 14 00D0h

SMI Filter Register 7 0098h SMI Filter Register 15 00D8h

MMIO Offset 00E0h Guest Virtual APIC Log Base Address Register

[AMD Public Use]

Registers 227

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

when Capability Offset 00h[EFRSup] = 0b or when MMIO Offset 0030h[GASup] = 0b.

An IO_PAGE_FAULT event caused by a guest interrupt is reported in the IOMMU event log (see
Section 2.5.3 [IO_PAGE_FAULT Event]). If GALogLen or GALogBase is changed while the
MMIO Offset 2020h[GALogRun] = 1, the IOMMU response is undefined. The head and tail pointers
for the guest virtual APIC log are found in the Guest Virtual APIC Log Head Pointer Register
[MMIO Offset 2040h] and Guest Virtual APIC Log Tail Pointer Register [MMIO Offset 2048h].

This register specifies the system physical address of the memory location containing the shadow tail
pointer for the guest virtual APIC log (see Guest Virtual APIC Log Tail Pointer Register [MMIO Off-
set 2048h]). A new 64-bit entry is written to the guest virtual APIC log when a guest virtual interrupt
addressed to a non-running guest OS is received by the IOMMU (see Section 2.7 [Guest Virtual
APIC (GA) Logging]).

This register is reserved when Capability Offset 00h[EFRSup] = 0b or when MMIO Offset
0030h[GASup] = 0b. If GALogLen or GALogBase is changed while MMIO Offset 2020h[GALo-
gRun] = 1, the IOMMU response is undefined. The register contains a system physical address as
shown:

63 60 59 56 55 52 51 32

Reserved GALogLen Reserved GALogBase

31 12 11 0

GALogBase Reserved

Bits Description

63:60 Reserved.

59:56 GALogLen: Guest virtual APIC log length. RW. Reset 1000b. Specifies the length of the guest virtual APIC log
in power of 2 increments. The minimum size is 512 entries (4 Kbytes); values less than 1000b are reserved.
0000b - 0111b = Reserved
1000b = 512 entries (4 Kbytes)
1001b = 1024 entries (8 Kbytes)
1010b = 2048 entries (16 Kbytes)
1011b = 4096 entries (32 Kbytes)
1100b = 8192 entries (64 Kbytes)
...
1101b-1111b = reserved

55:52 Reserved

51:12 GALogBase: Guest virtual interrupt log base address. RW. Reset 00_0000_0000h. Specifies bits [51:12] of the
base address of the guest virtual APIC log. The base address must be aligned to 4 Kbytes.

11:0 Reserved

MMIO Offset 00E8h Guest Virtual APIC Log Tail Address Register

[AMD Public Use]

228 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

The 64-bit value pointed to by the Guest Virtual APIC Log Tail Address Register [MMIO Offset
00E8h] contains a shadow-copy of the relative tail pointer of the guest virtual APIC log. The tail of
the guest virtual APIC log is at the SPA calculated as (Guest Virtual APIC Log Base Address Register
[MMIO Offset 00E0h] + MMIO Offset 00E8h[GALogTail]). The memory location pointed to by
Guest Virtual APIC Log Tail Address Register [MMIO Offset 00E8h] has the same format as the
Guest Virtual APIC Log Tail Pointer Register [MMIO Offset 2048h].

63 52 51 32

Reserved GATAddr[51:32]

31 3 2 0

GATAddr[31:3] 000b

Bits Description

63:52 Reserved.

51:3 GATAddr: Guest virtual APIC log tail address. RW. Reset 0. Specifies the SPA of the memory location
containing the tail pointer of the guest virtual APIC log. The address must be aligned to a 8-byte boundary.
When GATAddr is 0, the memory location is not updated and software must read the tail pointer from the Guest
Virtual APIC Log Tail Pointer Register [MMIO Offset 2048h].

2:0 Reserved.

[AMD Public Use]

Registers 229

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3.4.5 Alternate PPR and Event Log Base Registers

This register specifies the system physical address and length of the PPR log B. This register is
reserved if the PPR Dual Buffer feature is not supported.

The head and tail pointers for the PPR log B are PPR Log B Head Pointer Register [MMIO Offset
2050h] and PPR Log B Tail Pointer Register [MMIO Offset 2058h].

MMIO Offset 00F0h PPR Log B Base Address Register

63 60 59 56 55 52 51 32

Reserved PprBLen Reserved PprBbase

31 12 11 0

PprBbase Reserved

Bits Description

63:60 Reserved.

59:56 PprBLen: Peripheral Page Request B Log length. RW. Reset 1000b. Specifies the length of the PPR Log B in
power-of-2 increments. The minimum size is 512 entries (4 Kbytes); values less than 1000b are reserved.
0000b - 0111b = Reserved
1000b = 512 entries (4 Kbytes)
1001b = 1024 entries (8 Kbytes)
1010b = 2048 entries (16 Kbytes)
1011b = 4096 entries (32 Kbytes)
1100b = 8192 entries (64 Kbytes)
...
1101b–1111b = reserved

55:52 Reserved

51:12 PprBbase: Peripheral Page Request B Log base. RW. Reset 00_0000_0000h. Specifies bits [51:12] of the base
address of the alternate (B) PPR Log. The base address programmed must be aligned to 4 Kbytes.

11:0 Reserved

[AMD Public Use]

230 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register specifies the system physical address and length of the event log.

Software Note: If EventLogBlen or EventLogBbase are changed while the EventLogRun = 1, the
IOMMU behavior is undefined.

MMIO Offset 00F8h Event Log B Base Address Register

63 60 59 56 55 52 51 32

Reserved EventLogBlen Reserved EventLogBbase

31 12 11 0

EventLogBbase Reserved

Bits Description

63:60 Reserved.

59:56 EventLogBlen: Event log B length. RW. Reset 1000b. Specifies the length of the event log in power of 2
increments. The minimum size is 256 entries (4 Kbytes); values less than 1000b are reserved.
0000b - 0111b = Reserved
1000b = 256 entries (4 Kbytes)
1001b = 512 entries (8 Kbytes)
...
1111b = 32768 entries (512 Kbytes)

55:52 Reserved

51:12 EventLogBbase: Event log B base address. RW. Reset 00_0000_0000h. Specifies bits [51:12] of the base
address of the event log. The base address must be aligned to 4 Kbytes.

11:0 Reserved

[AMD Public Use]

Registers 231

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3.4.6 Device Table Segment [1–7] Base Address Registers

These registers allow software to independently set the SPA of each enabled Device Table segment.
When Device Table segmentation is supported and enabled, Device Table Base Address Register
[MMIO Offset 0000h] serves as the base address register for segment 0. When Device Table segmen-
tation is either not supported or not enabled, the Device Table Base Address Register [MMIO Offset
0000h] is used to specify the location and size of the single (unified) Device Table. Table 79 below
gives the MMIO offset of each of the seven Device Table Segment n Base Address Registers 1–7 and
the maximum value of the Size field for each.

MMIO Offset 0030h[DevTblSegSup], when non-zero, gives the number of segments supported. If
MMIO Offset 0030h[DevTblSegSup] = 00b, device table segmentation is not supported and the
Device Table Segment n Base Address registers are reserved.

MMIO Offset 01[00–30]h Device Table Segment n Base Address Register

63 52 51 32

Reserved DevTabBase[51:32]

31 12 11 7 0

DevTabBase[31:12] Reserved Size[7:0]

Bits Description

63:52 Reserved.

51:12 DevTabBase: Device Table segment n base address. RW. Reset 00_0000_0000h.
Specifies bits [51:12] of the 4 Kbyte aligned base address of this Device Table segment.

11:9 Reserved.

7:0 Size: Size of the Device Table segment n. RW. Reset 00h.
This field contains an unsigned value m that specifies the size of the Device Table for this segment in 4 Kbyte
increments. The size in bytes is equal to (m + 1) * 4 Kbytes.

Table 79: Device Table Segment Base Address Registers; Offsets and Maximum Size
Value

Register Name MMIO Offset
Maximum Value

of Size Field
Maximum
Size(Bytes)

Device Table Segment 1 Base Address Register 0100h FFh (255d) 1 Mbytes

Device Table Segment 2 Base Address Register 0108h 7Fh (127d) 512 Kbytes

Device Table Segment 3 Base Address Register 0110h 7Fh (127d) 512 Kbytes

Device Table Segment 4 Base Address Register 0118h 3Fh (63d) 256 Kbytes

Device Table Segment 5 Base Address Register 0120h 3Fh (63d) 256 Kbytes

[AMD Public Use]

232 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

3.4.7 Device-Specific Feature Registers

The Device-Specific Feature Registers are used to report IOMMU hardware revision level informa-
tion to system software. Three registers are defined: the Device-Specific Feature Extension Register,
the Device-Specific Control Extension Register, and the Device-Specific Status Extension Register.

Device Table Segment 6 Base Address Register 0128h 3Fh (63d) 256 Kbytes

Device Table Segment 7 Base Address Register 0130h 3Fh (63d) 256 Kbytes

MMIO Offset 0138h Device-Specific Feature Extension (DSFX) Register

63 32

Reserved

31 28 27 24 23 0

RevMajor RevMinor DevSpecificFeatSupp

Bits Description

63:28 Reserved.

31:28 RevMajor: RO. Major revision identifier.

27:24 RevMinor: RO. Minor revision identifier.

23:0 DevSpecificFeatSupp: Bit fields provide specific feature support information. Definition is Implementation-
specific.

Table 79: Device Table Segment Base Address Registers; Offsets and Maximum Size
Value (Continued)

Register Name MMIO Offset
Maximum Value

of Size Field
Maximum
Size(Bytes)

[AMD Public Use]

Registers 233

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

MMIO Offset 0140h Device-Specific Control Extension (DSCX) Register

63 32

Reserved

31 28 27 24 23 0

RevMajor RevMinor DevSpecificFeatCntrl

Bits Description

63:28 Reserved.

31:28 RevMajor: RO. Major revision identifier.

27:24 RevMinor: RO. Minor revision identifier.

23:0 DevSpecificFeatCntrl: RW. Reset 00_0000h. Fields (to be defined) used to control features reported in the
DSFX register.

MMIO Offset 0148h Device-Specific Status Extension (DSSX) Register

63 32

Reserved

31 28 27 24 23 0

RevMajor RevMinor DevSpecificFeatStatus

Bits Description

63:28 Reserved.

31:28 RevMajor: RO. Major revision identifier.

27:24 RevMinor: RO. Minor revision identifier.

23:0 DevSpecificFeatStatus: RW. Reset 00_0000h. Fields (to be defined) used to report the current status of features
reported in the DSFX register.

[AMD Public Use]

234 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

3.4.8 MMIO Access to MSI Capability Block Registers

IOMMU optionally supports direct access via memory-mapped I/O reads and writes to specific regis-
ter fields associated with MSI interrupts that would otherwise only be accessible via PCI configura-
tion cycles. Only those fields of each register related to configuring and enabling MSI interrupts are
accessible via this method.

This register shadows the fields of the IOMMU Miscellaneous Information Register 0 [Capability
Offset 10h] used to set up the MSI vector number for the Event Log and PPR Log exception inter-
rupts.

This register shadows the field of the IOMMU Miscellaneous Information Register 1 [Capability Off-
set 14h] used to set up the MSI / MSI-X vector number for the GA Log exception interrupt.

This register shadows the header of the IOMMU MSI capability block.

MMIO Offset 0150h MSI Vector Register 0

31 27 26 5 4 0

MsiNumPpr Reserved MsiNum

Bits Description

31:27 MsiNumPpr: RO. Returns the value programmed into bits[31:27] of the capability register.

26:5 Reserved.

4:0 MsiNum: RO. Returns the value programmed into bits[4:0] of the capability register.

MMIO Offset 0154h MSI Vector Register 1

31 5 4 0

Reserved MsiNumGa

Bits Description

31:5 Reserved.

4:0 MsiNumGa: RW. Reset 0_0000b.

MMIO Offset 0158h MSI Capability Header Register

31 24 23 22 20 19 17 16 15 8 7 0

Reserved

M
si

64
E

n

MsiMult
MessEn

MsiMult
MessCap M

si
E

n

Reserved MsiCapID

[AMD Public Use]

Registers 235

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register provides read / write access to the low 32 bits of the IOMMU MSI address.

This register provides read / write access to the upper 32 bits of the IOMMU MSI address.

Bits Description

31:24 Reserved.

23 Msi64bitEn: MSI 64-bit Enabled. RO. Reset 1b. This field always reads as 1 and indicates that the device (the
IOMMU) supports 64-bit MSI addresses.

22:20 MsiMultMessEn: MSI Multi-message Enable. RW. Reset 000b. Used to program the number of MSI messages
assigned to this function. MsiMultMessEn must be set to a value less than or equal to the value of
MsiMultMessCap

19:17 MsiMultMessCap: MSI Multi-message Capability. RO. Reset xxxb. Specifies the number of MSI messages
supported. 0 = MSI Multi-message capability not supported.

16 MsiEn: Message Signaled Interrupt Enable. RW. Reset 0. When set to 1, Message Signaled Interrupt capability
is enabled.

15:8 Reserved.

7:0 MsiCapId: Capability ID. RO. Value = 05h.

MMIO Offset 015Ch MSI Address Low Register

31 2 1 0

MsiAddr[31:2]
Reser
ved

Bits Description

31:2 MsiAddr[31:2]: RW. Reset xxxx_xxxxh. Bits [31:2] of the MSI address for the IOMMU. MsiAddr must be
doubleword aligned, therefore bits [1:0] are always 0.

1:0 Reserved.

MMIO Offset 0160h MSI Address High Register

31 0

MsiAddr[63:32]

Bits Description

31:0 MsiAddr[63:32]: RW. Reset xxxx_xxxxh. Bits [63:32] of the MSI address for the IOMMU.

[AMD Public Use]

236 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register provides read / write access to the IOMMU MSI data field.

This register shadows the header of the IOMMU MSI Mapping capability block.

MMIO Offset 0164h MSI Data Register

31 16 15 0

Reserved MsiData

Bits Description

31:16 Reserved.

15:0 MsiData: Message Signaled Interrupt Data. RW. Reset xxxxh.

MMIO Offset 0168h MSI Mapping Capability Header Register

31 27 26 18 17 16 15 8 7 0

MsiMapCapType Reserved

M
si

M
ap

F
ix

d

M
si

M
ap

E
n

Reserved MsiMapCapID

Bits Description

31:27 MsiMapCapType: RO. Value = 15h. Indicates the MSI Mapping Capability.

26:18 Reserved.

17 MsiMapFixd: MSI Map Fixed. RO. Value = 1b. MSI mapping range is fixed.

16 MsiMapEn: MSI Map Enable. RO. Value = 1b. Message Signaled Interrupt mapping capability is enabled.

15:8 Reserved.

7:0 MsiMapCapId: Capability ID. RO. Value = 08h.

[AMD Public Use]

Registers 237

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3.4.9 Performance Optimization Control Register

This register is used by system software to enable the optional IOMMU Performance Optimization
feature. This feature allows accesses from privileged (usually integrated) I/O devices such as GPUs to
bypass the IOMMU when directly accessing system memory. It is recommended to set this bit, unless
it is planned for the system software to use the the host I/O tables for GPA->SPA redirection

The register contains the PerfOptEn bit, which when set to 1 enables the feature. System software
may enable this feature if it is using the translation mechanism within the device rather than the
IOMMU to protect/translate integrated GPU access to system memory. These accesses may instead
be protected by controlling the private TLB inside the GPU. The mechanisms to do so are outside the
scope of the IOMMU specification.

A HV may enable this feature if it directly assigns an integrated GPU to a Guest OS and it maps the
Guest memory such that GPA = SPA. The MARC feature provides more flexibility to the HV and is
the preferred mechanism to use under virtualization. Both PerfOpt and MARC allow realtime DMA
clients (e.g., display, audio, ...) to access system memory with lower latency.

This register is supported if MMIO Offset 0030h[PerfOptSup] = 1; otherwise this register is reserved.

MMIO Offset 016Ch IOMMU Performance Optimization Control Register

31 14 13 12 0

Reserved

P
e

rf
O

pt
E

n

Reserved

Bits Description

31:14 Reserved.

13 PerfOptEn. RW. Reset 0b.

12:0 Reserved.

[AMD Public Use]

238 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

3.4.10 IOMMU x2APIC Control Register

IOMMU generated interrupts will have field values based on the programming in XT IOMMU Inter-
rupt Control Registers in MMIO 0x170-0x180 when MMIO 0x18[IntCapXTEn]=1.

This register is used to define the fields used for the interrupt message generated by the IOMMU for
Event Log exception interrupts and Completion_wait interrupts when MMIO 0x18[IntCapXTEn]=1.

I

MMIO Offset 0x170h XT IOMMU General Interrupt Control Register

63 56 55 41 40 39 32

XTIntDest[31:24] Reserved

X
T

In
tD

M

XTIntVector[7:0]

31 8 7 3 2 1 0

XTIntDest[23:0] Reserved

X
T

In
tD

es
tM

od
e

R
es

er
ve

d

Bits Description

63:56 XTIntDest[31:24]: RW. Destination field bit[31:24] for IOMMU general interrupt when x2APIC is enabled.

55:41 Reserved

40 XTIntDM: RW. Delivery Mode for IOMMU general interrupt when x2APIC is enabled. 0 = Fixed, 1 =
Arbitrated

39:32 XTIntVector[7:0]: RW. Vector field for IOMMU general interrupt when x2APIC is enabled.

31:8 XTIntDest[23:0]: RW. Destination field bit[23:0] for IOMMU general interrupt when x2APIC is enabled.

7:3 Reserved

2 XTIntDestMode: RW. Destination Mode for IOMMU PPR interrupt when x2APIC is enabled. 0 = Physical
Mode, 1 = Logical Mode

1:0 Reserved

[AMD Public Use]

Registers 239

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register is used to define the fields used for the interrupt message generated by the IOMMU for
PPR Log exception interrupts when MMIO 0x18[IntCapXTEn]=1.

MMIO Offset 0x178h XT IOMMU PPR Interrupt Control Register

63 56 55 41 40 39 32

XTIntDest[31:24] Reserved

X
T

In
tD

M

XTIntVector[7:0]

31 8 7 3 2 1 0

XTIntDest[23:0] Reserved

X
T

In
tD

es
tM

od
e

R
es

er
ve

d

Bits Description

63:56 XTIntDest[31:24]: RW. Destination field bit[31:24] for IOMMU PPR interrupt when x2APIC is enabled.

55:41 Reserved

40 XTIntDM: RW. Delivery Mode for IOMMU PPR interrupt when x2APIC is enabled. 0 = Fixed, 1 = Arbr0

39:32 XTIntVector[7:0]: RW. Vector field for IOMMU PPR interrupt when x2APIC is enabled.

31:8 XTIntDest[23:0]: RW. Destination field bit[23:0] for IOMMU PPR interrupt when x2APIC is enabled.

7:3 Reserved

2 XTIntDestMode: RW. Destination Mode for IOMMU PPR interrupt when x2APIC is enabled. 0 = Physical
Mode, 1 = Logical Mode.

1:0 Reserved

[AMD Public Use]

240 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register is used to define the fields used for the interrupt message generated by the IOMMU for
GA Log exception interrupts when MMIO 0x18[IntCapXTEn]=1.

MMIO Offset 0x180h XT IOMMU GA Log Interrupt Control Register

63 56 55 41 40 39 32

XTIntDest[31:24] Reserved

X
T

In
tD

M

XTIntVector[7:0]

31 8 7 3 2 1 0

XTIntDest[23:0] Reserved

X
T

In
tD

es
tM

od
e

R
es

er
ve

d

Bits Description

63:56 XTIntDest[31:24]: RW. Destination field bit[31:24] for IOMMU GA Log interrupt when x2APIC is enabled.

55:41 Reserved

40 XTIntDM: RW. Delivery Mode for IOMMU GA Log interrupt when x2APIC is enabled.

39:32 XTIntVector[7:0]: RW. Vector field for IOMMU GA Log interrupt when x2APIC is enabled.

31:8 XTIntDest[23:0]: RW. Destination field bit[23:0] for IOMMU GA Log interrupt when x2APIC is enabled.

7:3 Reserved

2 XTIntDestMode: RW. Destination Mode for IOMMU GA Log interrupt when x2APIC is enabled. 0 =
physical CPU, 1 = logical CPU.

1:0 Reserved

[AMD Public Use]

Registers 241

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3.4.11 vIOMMU Status Register

This register indicates the current status of the vIOMMU

3.4.12 Memory Access and Routing (MARC) Registers

The Memory Access Routing and Control (MARC) feature provides a fast static translation mecha-
nism that provides I/O device domain to system physical address translation with simple read-only or
read / write access permissions. When a DVA emitted by an I/O device falls within one of the pro-
grammed and enabled MARC apertures, and access permissions match, the translation is applied and
the remainder of the translation process is bypassed.

Support for the MARC feature is indicated by MMIO Offset 0030h[MarcSup] = 1.

If the I/O device domain address does not fall within any of the enabled MARC apertures, or if the
access permissions do not match, the address is passed on to the remainder of the translation process.

This feature allows trusted system software to allocate several contiguous physical ranges for low-
latency graphics processing in virtualized systems.

Each aperture and its corresponding translation address with access permissions is set up by software
by programming a set of three MARC aperture registers. These are the MARC Aperture Base Regis-
ter, Length Register, and Relocation Register. When supported, MARC provides either four or eight
of these register tuples.

Implementation Note: The first revision 2.6 implementation provides four sets (four triplets) of these
registers.

For each aperture, the base, relocation, and length registers are located in consecutive quadword-
aligned MMIO offsets. The following table lists these offsets.

MMIO Offset 0x190h vIOMMU Status Register

63 56 55 41 40 39 32

Reserved

31 8 7 3 2 1 0

Reserved

vC
m

d
R

u
n

Io
m

m
uR

un

Bits Description

63:2 Reserved

1 vCmdRun: RO. 1 = virtualized command buffers process are running. 0 = vIOMMU stop processing
virtualized command buffers.

0 vIommuRun: RO. 1 = virtualized IOMMU functionality is running. 0 = virtualized IOMMU functionality is
not running.

[AMD Public Use]

242 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

The registers are defined below:

Note: MMIO Offsets 02[60,78,90,A8]h are reserved.

Table 80: MARC Aperture Register Offsets (hexadecimal)

Aperture Base Register Relocation Register Length Register

0 200 208 210

1 218 220 228

2 230 238 240

3 248 250 258

MMIO Offset 02[00,18,30,48]h MARC Aperture [0–3] Base Register

63 52 51 32

Reserved MarcBaseAddr[51:32]

31 12 11 0

MarcBaseAddr[31:12]

Bits Description

63:52 Reserved.

51:12 MarcBaseAddr: MARC aperture base address. RW. Reset 00_0000_0000h. Specifies bits [51:12] of the
4 Kbyte aligned base address of a MARC memory aperture in the device’s address space.

11:0 Reserved.

[AMD Public Use]

Registers 243

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Note: MMIO Offsets 02[68,80,98,B0]h are reserved.

Note: MMIO Offsets 02[70,88,A0,B8]h are reserved.

MMIO Offset 02[08,20,38,50]h MARC Aperture [0–3] Relocation Register

63 52 51 32

Reserved MarcRelocAddr[51:32]

31 12 11 0

MarcRelocAddr[31:12] Reserved

R
e

ad
O

nl
y

R
el

oc
E

n

Bits Description

63:52 Reserved.

51:12 MarcRelocAddr: MARC aperture relocation address. RW. Reset 00_0000_0000h. Specifies bits [51:12] of the
4 Kbyte aligned system physical address (SPA) for the aperture defined by the corresponding MARC base and
length registers.

11:2 Reserved.

1 ReadOnly: RW. Reset 0. 0 = Read and write accesses are allowed. 1 = Only read accesses are allowed. Note:
when access permission fails, no error is flagged and the address is passed on to the IOMMU translation
mechanism.

0 RelocEn: Relocation Enable. RW. Reset 0. 0 = ignore this aperture base address, length, and relocation address.
1 = base address, length, and relocation address for this aperture are valid and active.

MMIO Offset 02[10,28,40,58]h MARC Aperture [0–3] Length Register

63 52 51 32

Reserved MarcLength[51:32]

31 12 11 0

MarcLength[31:12]

Bits Description

63:52 Reserved.

51:12 MarcLength: MARC aperture Length. RW. Reset 00_0000_0000h. Bits [51:12] of this register, interpreted as
an unsigned integer, indicates the length of the MARC aperture in 4-Kbyte pages.

11:0 Reserved.

[AMD Public Use]

244 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

To define an aperture of one 4-Kbyte page, the value of MarcLength is programmed to 1. If
MarcLength is programmed to 0 (or left unchanged from its default value) and the aperture is enabled
(by setting MMIO Offset 02[08,20,38,50]h[RelocEn] to 1), the resultant behavior is implementation-
dependent, but does not result in the signaling of an error.

3.4.13 Extended Feature 2 Register

This register specifies the extended features supported by the IOMMU.

Note: When Capability Offset 00h[EFRSup] = 0b, this register is reserved, and the features described
by it are not supported by the IOMMU.

MMIO Offset 01A0h IOMMU Extended Feature 2 Register

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
H

T
R

an
ge

Ig
no

re

R
es

er
ve

d

N
um

In
tR

em
a

pS
up

S
N

P
A

V
IC

S
up

G
A

P
P

ID
is

S
up

G
C

R
3T

R
P

M
od

eS
up

T
M

P
M

S
up

R
es

er
ve

d

Bits Description

63:12 Reserved.

11 HTRangeIgnore: RO. When 1, GPA access to special HT ranges are treated as regular GPA accesses.

10 Reserved.

9:8 NumIntRemapSup: RO
00b: IOMMU supports remapping up to 512 interrupts per function.
01b: IOMMU supports remapping up to 2048 interrupts per function.
All other encodings are reserved. See Table 19 on page 90 for activation controls.

7:5 SNPAVICSup: RO
000b = No advanced interrupt features supported (interrupt remapping only) when the system is SNP-enabled.
001b = Hardware supports Interrupt Remapping using Guest Virtual APIC as described in Section 2.2.5.2
[Interrupt Virtualization Tables with Guest Virtual APIC Enabled] on page 92 for non-SNP VMs in SNP
enabled system.
All other encodings reserved.

4 GAPPIDisSup: RO
Support for masking Guest APIC Physical Processor Interrupt based on IRTE[GAPPIDis] when Interrupt
Virtualization is enabled. See Section 2.2.5.4, “Guest APIC Physical Processor Interrupt” on page 99.

[AMD Public Use]

Registers 245

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3.4.14 Reserved Register

Reserved. RW. Reset 0. Not for software use.

Software Note: Software should not access this register.

3.4.15 Command and Event Log Pointer Registers

This register points to the offset in the command buffer that will be read next by the IOMMU.

3 GCR3TRPModeSup: RO
Support for GPA based GCR3 Pointer inside DTE. 0: Pointer to GCR3 Table inside DTE is SPA. 1: Pointer to
GCR3 Table in DTE is GPA based. The GPA must be translated by IOMMU using nested page tables to be
system physical addresses (see Section 2.2.3, “I/O Page Tables for Host Translations” on page 79).

2 TMPMSup: RO
IOMMU Support for the AMD Tiered Memory Page Migration Feature.
When TMPMEn=1, host PTE bits 58:57 are no longer treated as reserved.
Refer to the AMD Tiered Memory Page Migration Operations Guide, order# 58151 for details on the usage of
these bits during page migration process.

2:0 Reserved.

MMIO Offset 1FF8h IOMMU Reserved Register

63 32

IommuReserved[63:32]

31 0

IommuReserved[31:0]

Bits Description

63:0 IommuReserved: Reserved register. RW. Reset 0. Reserved for hardware use. Not for software use.

MMIO Offset 2000h Command Buffer Head Pointer Register

63 32

Reserved

31 19 18 4 3 0

Reserved CmdHeadPtr Reserved

Bits Description

[AMD Public Use]

https://www.amd.com/system/files/TechDocs/58151.pdf

246 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register points to the offset in the command buffer that will be written next by the software.

This register points to the offset in the event buffer that will be read next by the software.

Bits Description

63:19 Reserved.

18:4 CmdHeadPtr: Command buffer head pointer. RW. Reset 0000h. Specifies the 16-byte aligned offset from the
command buffer base address register of the next command to be fetched by the IOMMU. The IOMMU
increments this register, rolling over to zero at the end of the buffer, after fetching and validating the command
in the command buffer. After incrementing this register, the IOMMU cannot re-fetch the command from the
buffer. If this register is written to by software while CmdBufRun = 1b, the IOMMU behavior is undefined. If
this register is set by software to a value outside the length specified by MMIO Offset 0008h[ComLen], the
IOMMU behavior is undefined.

3:0 Reserved.

MMIO Offset 2008h Command Buffer Tail Pointer Register

63 32

Reserved

31 19 18 4 3 0

Reserved CmdTailPtr Reserved

Bits Description

63:19 Reserved.

18:4 CmdTailPtr: Command buffer tail pointer. RW. Reset 0000h. Specifies the 128-bit aligned offset from the
command buffer base address register of the next command to be written by the software. Software must
increment this field, rolling over to zero at the end of the buffer, after writing a command to the command
buffer. If software advances the tail pointer equal to or beyond the head pointer after adding one or more
commands to the buffer, the IOMMU behavior is undefined. If software sets the command buffer tail pointer to
an offset beyond the length of the command buffer, the IOMMU behavior is undefined.

3:0 Reserved.

MMIO Offset 2010h Event Log Head Pointer Register

63 32

Reserved

[AMD Public Use]

Registers 247

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

31 19 18 4 3 0

Reserved EventHeadPtr Reserved

Bits Description

63:19 Reserved.

18:4 EventHeadPtr: Event log head pointer. RW. Reset 0000h. Specifies the 128 bit aligned offset from the event
log base address register that will be read next by software. Software must increment this field, rolling over at
the end of the buffer, after reading an event from the event log. If software advances the head pointer beyond the
tail pointer, the IOMMU behavior is undefined. If software sets the event log head pointer to an offset beyond
the length of the event log, the IOMMU behavior is undefined.

3:0 Reserved.

[AMD Public Use]

248 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register points to the offset in the event buffer that will be written next by the IOMMU.

3.4.16 Command and Event Status Register

This register indicates the current status of the IOMMU command and event processing. If interrupts
are enabled, the IOMMU signals an interrupt when one of the interrupt status bits is set by hardware
and no other interrupts status bits are set. Other bits report the status of command buffer processing
and event logging.

MMIO Offset 2018h Event Log Tail Pointer Register

63 32

Reserved

31 19 18 4 3 0

Reserved EventTailPtr Reserved

Bits Description

63:19 Reserved.

18:4 EventTailPtr: Event log tail pointer. RW. Reset 0000h. Specifies the 128 bit aligned offset from the event log
base address register that will be written next by the IOMMU when an event is detected. The IOMMU
increments this register, rolling over at the end of the buffer, after writing an event to the event log. If this
register is written while EventLogRun = 1, the IOMMU behavior is undefined. If this register is set by software
to a value outside the length specified by MMIO Offset 0010h[EventLen], the IOMMU behavior is undefined

3:0 Reserved.

MMIO Offset 2020h IOMMU Status Register

63 32

Reserved

31 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

P
p

rO
vr

flw
E

ar
ly

P
pr

O
vr

flw
E

ar
ly

B

E
ve

n
tL

og
A

ct
iv

e

E
ve

nt
O

vr
flw

B

R
es

er
ve

d

P
p

rL
og

A
ct

iv
e

P
pr

O
vr

flw
B

G
A

In
t

G
A

LO
ve

rf
lo

w

G
A

Lo
gR

un

P
pr

Lo
gR

un

P
pr

In
t

P
pr

O
ve

rf
lo

w

C
m

dB
uf

R
un

E
ve

nt
Lo

gR
un

C
o

m
W

a
itI

nt

E
ve

nt
Lo

gI
nt

E
ve

nt
O

ve
rf

lo
w

[AMD Public Use]

Registers 249

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Bits Description

63:19 Reserved.

18 PprOvrflwEarly: PPR log Overflow Early warning. RW1C Reset 0b.
1 = IOMMU PPR log has reached its early overflow threshold.
When supported and enabled, hardware sets this bit when the number of free entries in the PPR Log has reached
the programmed threshold. When MMIO Offset 0018h[PprAutoRspEn] = 1, hardware will generate auto
responses for PPR requests but will pass Stop marker PPR messages through to the PPR log. The PPR Log
overflow early warning feature is enabled by setting MMIO Offset 2088[PprOvrflwEarlyEn] (bit 31).

17 PprOvrflwEarlyB: PPR log B Overflow Early warning. RW1C Reset 0b. 1 = IOMMU PPR log B has reached
its early overflow threshold.
When supported and enabled, hardware sets this bit when the number of free entries in the PPR Log has reached
the programmed threshold. When MMIO Offset 0018h[PprAutoRspEn = 1, hardware will generate auto
responses for PPR requests but will pass Stop marker PPR messages through to the PPR log B. The PPR Log
overflow early warning feature is enabled by setting MMIO Offset 2090[PprBOvrflwEarlyEn] (bit 31).

16 EventLogActive: RO Reset 0b. 0 = Event Log A is active. 1 = Event Log B is active.

15 EventOvrflwB: RW1C Reset 0b. 1 = Event Log B has overflowed. When the dual event log feature is
supported and enabled, EventOverflow (bit 0) serves as the Event Log A overflow indication.

14:13 Reserved.

12 PprLogActive: RO Reset 0b. 0 = PPR Log A is active. 1 = PPR Log B is active.

11 PprOvrflwB: RW1C Reset 0b. 1 = PPR Log B has overflowed. When the dual PPR log feature is supported and
enabled, PPROverflow (bit 5) serves as the PPR Log A overflow indication.

10 GAInt: Guest virtual APIC log Interrupt. RW1C. Reset 0b. 1 = Virtual interrupt request written to the guest
virtual APIC log by the IOMMU. 0 = No log entry written. An interrupt is generated when GAInt changes from
0b to 1b and MMIO Offset 0018h[GAIntEn] = 1b.
Software Note: Upon servicing a GA log interrupt, the software should clear GAInt to 0b (RW1C).

9 GALOverflow: Guest virtual APIC log Overflow. RW1C. Reset 0b. 1 = IOMMU guest virtual APIC event log
overflow has occurred. This bit is set when a new guest virtual APIC event is to be written to the log and there is
no usable entry in the log, causing the new event information to be discarded. No interrupt is generated when
GALOverflow is changed from 0b to 1b. No new guest virtual APIC log entries are written while this bit is set.
The virtual APIC backing page is always updated so the interrupt is not lost. Software Note: To resume
logging, adjust the head and tail pointers, clear GALOverflow (W1C) and write to MMIO Offset
0018h[GALogEn].

8 GALogRun: Guest virtual APIC logging is running. RO. Reset 0b. 1 = guest virtual APIC events are logged as
they occur when the guest is not running (see IRTE[IsRun] in Figure 18 on page 96). 0 = guest virtual APIC
events are discarded without logging. When GALOverflow = 1, the IOMMU does not write new guest virtual
APIC log entries even when GALogRun = 1. When halted, guest virtual APIC event logging is restarted by
using MMIO Offset 0018h[GALogEn].

7 PPRLogRun: Peripheral page request logging is running. RO. Reset 0b. 1 = PPR requests are logged as they
occur. 0 = PPR requests are discarded without logging. When PprOverflow = 1b, the IOMMU does not write
new PPR log entries even when PPRLogRun = 1b. When halted, PPR request logging is restarted by using
MMIO Offset 0018h[PPRLogEn].

6 PprInt: Peripheral page request interrupt. RW1C. Reset 0b. 1 = PPR request entry written to the PPR log by the
IOMMU. 0 = No PPR entry written to the PPR log by the IOMMU. An interrupt is generated when PprInt
changes from 0b to 1b and MMIO Offset 0018h[PprIntEn] = 1b.
Software Note: Upon servicing a PPR interrupt, the software should clear PprInt to 0b (RW1C).

[AMD Public Use]

250 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

5 PprOverflow: Peripheral page request log overflow. RW1C. Reset 0b. 1 = IOMMU PPR log overflow has
occurred. This bit is set when a new peripheral page request is to be written to the PPR log and there is no usable
entry in the PPR log, causing the new event information to be discarded. An interrupt is generated when
PprOverflow = 1b and MMIO Offset 0018h[PprIntEn] = 1b (see Capability Offset 10h[MsiNumPPR]). No new
PPR log entries are written while this bit is set.
Software Note: To resume logging, clear PprOverflow (W1C), and write a 1 to MMIO Offset
0018h[PPRLogEn]. This condition can be eliminated by setting PprOvrflwB bit and increasing the PprLogA
size while PprLogB is used, then switching back.

4 CmdBufRun: Command buffer is running. RO. Reset 0b. 1 = the IOMMU may fetch commands from the
command buffer. 0 = IOMMU does not fetch commands from the command buffer. The IOMMU stops
command processing after COMMAND_HARDWARE_ERROR (Section 2.5.7
[COMMAND_HARDWARE_ERROR Event]) and ILLEGAL_COMMAND_ERROR (Section 2.5.6
[ILLEGAL_COMMAND_ERROR Event]) events. When CmdBufRun = 0, the IOMMU will not fetch
commands until software programs MMIO Offset 0018h[CmdBufEn].
Implementation Note: CmdBufRun is level-sensitive; once set to 1, it does not change to 0 until command
processing stops for cause; and once set to 0, it does not change to 1 until MMIO Offset 0018h[CmdBufEn] is
written with 1 by software.

3 EventLogRun: Event logging is running. RO. Reset 0b. 1 = events are logged as they occur. 0 = event reports
are discarded without logging. When EventOverflow = 1b, the IOMMU does not write new event log entries
even when EventLogRun = 1b. When halted, event logging is restarted by using MMIO Offset
0018h[EventLogEn].

2 ComWaitInt: Completion wait interrupt. RW1C. Reset 0b. 1 = COMPLETION_WAIT command completed.
This bit is only set if the i bit is set in the COMPLETION_WAIT command. An interrupt is generated when
ComWaitInt = 1b and MMIO Offset 0018h[ComWaitIntEn] = 1b (see Capability Offset 10h[MsiNum]).
Software Note: Upon servicing this interrupt, sofware should clear ComWaitInt to 0b (RW1C).

1 EventLogInt: Event log interrupt. RW1C. Reset 0b. 1 = Event entry written to the event log by the IOMMU. 0
= No event entry written to the event log by the IOMMU. An interrupt is generated when EventLogInt = 1b and
MMIO Offset 0018h[EventIntEn] = 1b.
Software Note: Upon servicing this interrupt, sofware should clear EventLogInt to 0b (RW1C).

0 EventOverflow: Event log overflow. RW1C. Reset 0b. 1 = IOMMU event log overflow has occurred. This bit
is set when a new event is to be written to the event log and there is no usable entry in the event log, causing the
new event information to be discarded. An interrupt is generated when EventOverflow = 1b and MMIO Offset
0018h[EventIntEn] = 1b. No new event log entries are written while this bit is set. Software Note: To resume
logging, clear EventOverflow (W1C), and write a 1 to MMIO Offset 0018h[EventLogEn].

Bits Description

[AMD Public Use]

Registers 251

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3.4.17 PPR Log Head and Tail Pointer Registers

This register points to the offset in the peripheral page request log entry that will be read next by the
software. If EFR[PPRSup] = 0, this register is reserved.

This register points to the offset in the peripheral page request log that will be written next by the
IOMMU. If EFR[PPRSup] = 0, this register is reserved.

MMIO Offset 2030h IOMMU PPR Log Head Pointer Register

63 32

Reserved

31 19 18 4 3 0

Reserved PPRHeadPtr Reserved

Bits Description

63:19 Reserved.

18:4 PPRHeadPtr: Peripheral page request log head pointer. RW. Reset 0000h. Specifies the 128 bit aligned offset
from the PPR log base address register that will be read next by software. Software must increment this field,
rolling over at the end of the buffer, after reading a PPR request entry from the PPR event log. If software
advances the head pointer beyond the tail pointer, the IOMMU behavior is undefined. If software sets the PPR
log head pointer to an offset beyond the length of the PPR log, the IOMMU behavior is undefined.

3:0 Reserved.

MMIO Offset 2038h IOMMU PPR Log Tail Pointer Register

63 32

Reserved

31 19 18 4 3 0

Reserved PPRTailPtr Reserved

[AMD Public Use]

252 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

3.4.18 Guest Virtual APIC Log Head and Tail Pointer Registers

This register points to the byte offset in the guest virtual APIC log that will be read next by system
software. If EFR[GASup] = 0, this register is reserved.

This register points to the byte offset in the guest virtual APIC log that will be written next by the
IOMMU. If EFR[GASup] = 0, this register is reserved.

Bits Description

63:19 Reserved.

18:4 PPRTailPtr: peripheral page request log tail pointer. RW. Reset 0000h. Specifies the 128 bit aligned offset from
the PPR log base address register that will be written next by the IOMMU when a PPR request is detected. The
IOMMU increments this register, rolling over at the end of the buffer, after writing a PPR request to the PPR log.
If this register is written while PPRLogRun = 1, IOMMU behavior is undefined. If this register is set by software
to a value outside the length specified by MMIO Offset 0038h[PPRLen], IOMMU behavior is undefined.

3:0 Reserved.

MMIO Offset 2040h Guest Virtual APIC Log Head Pointer Register

63 32

Reserved

31 16 15 3 2 0

Reserved GALogHead Reserved

Bits Description

63:16 Reserved.

15:0 GALogHead: Guest virtual APIC log head pointer. RW. Reset 0000h. Specifies the 64-bit aligned offset from
the Guest Virtual APIC Log Base Address Register [MMIO Offset 00E0h] that will be read next by software.
Software must increment this field, rolling over at the end of the buffer, after reading an entry from the GA log.
If software advances the head pointer to or beyond the tail pointer, the IOMMU behavior is undefined.

MMIO Offset 2048h Guest Virtual APIC Log Tail Pointer Register

63 32

Reserved

31 16 15 3 2 0

Reserved GALogTail Reserved

[AMD Public Use]

Registers 253

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3.4.19 PPR Log B Head and Tail Pointer Registers

This register points to the offset the entry in the peripheral page request log B that will be read next by
the software. If EFR[DualPPRLogSup] = 0, this register is reserved.

This register points to the offset in the peripheral page request log B that will be written next by the
IOMMU. If EFR[DualPPRLogSup] = 0, this register is reserved.

Bits Description

63:16 Reserved.

15:0 GALogTail: Guest virtual APIC log tail pointer. RW. Reset 0000h. Specifies the 8-byte aligned offset from the
Guest Virtual APIC Log Base Address Register [MMIO Offset 00E0h] that will be written next by the IOMMU
when an undelivered virtual interrupt request needs to be entered into the log. The IOMMU increments this
register, rolling over at the end of the buffer, after writing an entry into the log.
Note: IOMMU maintains a copy of the GA Log tail pointer in system memory at the address pointed to by the
contents of the Guest Virtual APIC Log Tail Address Register [MMIO Offset 00E8h].

MMIO Offset 2050h PPR Log B Head Pointer Register

63 32

Reserved

31 16 15 3 2 0

Reserved PprBheadptr Reserved

Bits Description

63:16 Reserved.

18:4 PprBheadptr: Peripheral page request log B head pointer. RW. Reset 0000h. Specifies the 128 bit aligned
offset from the PPR log B base address register that will be read next by software. Software must increment this
field, rolling over at the end of the buffer, after reading a PPR request entry from the PPR log. If software
advances the head pointer beyond the tail pointer, the IOMMU behavior is undefined. If software sets the PPR
log B head pointer to an offset beyond the length of the PPR log, the IOMMU behavior is undefined.

MMIO Offset 2058h PPR Log B Tail Pointer Register

63 32

Reserved

31 19 18 4 3 0

Reserved PprBtailptr Reserved

[AMD Public Use]

254 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

3.4.20 Event Log B Head and Tail Pointer Registers

This register points to the offset in the event log B that will be read next by the software.
If EFR[DualEventLogSup] = 0, this register is reserved.

This register points to the offset in the event Log B buffer that will be written next by the IOMMU. If
EFR[DualEventLogSup] = 0, this register is reserved.

Bits Description

63:19 Reserved.

18:4 PprBtailptr: peripheral page request log B tail pointer. RW. Reset 0000h. Specifies the 128 bit aligned offset from
the PPR log B base address register that will be written next by the IOMMU when a PPR request is detected. The
IOMMU increments this register, rolling over at the end of the buffer, after writing a PPR request to the PPR log B.
If this register is written while PPRLogRun = 1, IOMMU behavior is undefined. If this register is set by software
to a value outside the length specified by MMIO Offset 00F0h[PprBLen], IOMMU behavior is undefined.

3:0 Reserved.

MMIO Offset 2070h Event Log B Head Pointer Register

63 32

Reserved

31 16 15 3 2 0

Reserved EventLogBheadptr Reserved

Bits Description

63:16 Reserved.

18:4 EventLogBheadptr: Event log B head pointer. RW. Reset 0000h. Specifies the 128 bit aligned offset from the
Event Log B base address register that will be read next by software. Software must increment this field, rolling
over at the end of the buffer, after reading an event log entry from the Event log B. If software advances the
head pointer beyond the tail pointer, the IOMMU behavior is undefined. If software sets the Event log B head
pointer to an offset beyond the length of the Event log B, the IOMMU behavior is undefined.

MMIO Offset 2078h Event Log B Tail Pointer Register

63 32

Reserved

31 19 18 4 3 0

Reserved EventLogBtailptr Reserved

[AMD Public Use]

Registers 255

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3.4.21 PPR Log Overflow Protection Registers

This register controls the response that is generated when a peripheral page request is received from a
PCI device.

Bits Description

63:19 Reserved.

18:4 EventLogBtailptr: Event log B tail pointer. RW. Reset 0000h. Specifies the 128 bit aligned offset from starting
address of the event log specified by the Event Log B Base Register that will be written next by the IOMMU when
an event is detected. The IOMMU increments this register, rolling over at the end of the buffer, after writing an
event to the event log. If this register is written while EventLogRun = 1, the IOMMU behavior is undefined. If this
register is set by software to a value outside the length specified by MMIO Offset 00F8h[EventLogBlen], the
IOMMU behavior is undefined.

3:0 Reserved.

MMIO Offset 2080h PPR Log Auto Response Register

63 32

Reserved

31 5 4 3 0

Reserved

P
pr

A
ut

oR
es

pM
sk

G
n

PprAutoResp
Code

Bits Description

63:5 Reserved.

4 PprAutoRespMskGn: PPR log Auto Response Mask Gen. RW. Reset 0.

3:0 PprAutoRespCode: PPR log Auto Response Code.

[AMD Public Use]

256 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register is used to control the PPR Log (A) early overflow indication feature.

This register is used to control the PPR Log B early overflow indication feature.

MMIO Offset 2088h PPR Log Overflow Early Indicator Register

63 32

Reserved

31 30 29 15 14 0

P
p

rO
vr

flw
E

a
rly

E
n

P
pr

O
vr

flw
E

ar
ly

In
tE

n

Reserved PprOvrflwEarlyThreshold

Bits Description

63:32 Reserved.

31 PprOvrflwEarlyEn: PPR log Overflow Early indicator Enable. RW. Reset 0.
0 = PPR Log overflow early indicator mechanism is disabled. 1 = PPR Log overflow early indicator mechanism
is enabled.

30 PprOvrflwEarlyIntEn: PPR log Overflow Early indicator Interrupt Enable. RW. Reset 0.
1 = an IOMMU MSI is signaled when the number of remaining entries in the PPR log is less than the
programmed PprOvrflwEarlyThreshold value. 0 = an MSI is not signaled.

29:15 Reserved.

14:0 PprOvrflwEarlyThreshold: PPR log Overflow Early indicator threshold. RW. Reset 0000h. A PPR Log
overflow early indication is asserted when the number of remaining entries in the PPR log is less than this value.

MMIO Offset 2090h PPR Log B Overflow Early Indicator Register

63 32

Reserved

31 30 29 15 14 0

P
p

rO
vr

flw
E

a
rly

E
n

P
pr

O
vr

flw
E

ar
ly

In
tE

n

Reserved PprOvrflwEarlyThreshold

[AMD Public Use]

Registers 257

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3.4.22 IOMMU Event Counter Registers

If IOMMU Extended Feature Register [MMIO Offset 0030h][PCSup] = 0, the event counter registers
are reserved.

3.4.22.1 MMIO Event Counter Control Registers

The following set of registers, MMIO Offset 4000h through MMIO Offset 4018h, control the
IOMMU event counters.

This register reports the type and number of counters available to software.

Bits Description

63:32 Reserved.

31 PprBOvrflwEarlyEn: PPR log B Overflow Early indicator Enable. RW. Reset 0.
0 = PPR Log B overflow early indicator mechanism is disabled. 1 = PPR Log B overflow early indicator
mechanism is enabled.

30 PprBOvrflwEarlyIntEn: PPR log B Overflow Early indicator Interrupt Enable. RW. Reset 0.
1 = an IOMMU MSI is signaled when the number of remaining entries in the PPR log B is less than the
programmed PprOvrflwEarlyThreshold value. 0 = an MSI is not signaled.

29:15 Reserved.

14:0 PprBOvrflwEarlyThreshold: PPR log B Overflow Early indicator threshold. RW. Reset 0000h. A PPR Log B
overflow early indication is asserted when the number of remaining entries in the PPR log B is less than this
value.

MMIO Offset 4000h IOMMU Counter Configuration Register

63 32

Reserved

31 18 17 12 11 10 7 6 0

Reserved NCounterBanks 0 NCounter Reserved

[AMD Public Use]

258 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register locks the corresponding PASID-match register, IOMMU PASID Match Register
[MMIO Offset [40-7F][0-F]10h]. When a PASID-match register is locked, the register can be read
but writes are ignored.

Software Note: this register should be managed by trusted software.

Bits Description

63:18 Reserved.

17:12 NCounterBanks[5:0]: Number of IOMMU counter banks. RO. Reset XXh. The number of counter banks
supported by the IOMMU. Each bank contains two or more counter register and control registers as specified by
NCounter. For each counter bank, a corresponding control bit is in IOMMU Counter PASID Bank-Lock
Register [MMIO Offset 4008h], IOMMU Counter Domain Bank-Lock Register [MMIO Offset 4010h], and
IOMMU Counter DeviceID Bank-Lock Register [MMIO Offset 4018h]. Each supported event counter bank is
in a distinct, consecutive 4-Kbyte page. The limit of 63 counter banks is architectural and an implementation
may set a lower value.
0 = No event counter banks supported.
1–63 = The number of event counter banks supported.
Note: IOMMU event counter banks are numbered starting with 0.

11 Reserved.

10:7 NCounter[3:0]: Number of counters per counter bank. RO. Reset Xh. Reports the number of individual
counters in each IOMMU counter bank. Each counter bank contains the same number of counters.
0 = No counters supported.
1 = Reserved.
2–15 = number of counters in each counter bank.

6:0 Reserved.

MMIO Offset 4008h IOMMU Counter PASID Bank-Lock Register

63 32

PASIDLock[63:32]

31 0

PASIDLock[31:0]

Bits Description

63:0 PASIDLock: PASID lock enable. RW. Reset 0.
0 = Corresponding counter bank of PASID-match registers is unlocked.
1 = locked (writes are ignored).
For each bit in PASIDLock, the corresponding PASID-match registers in an IOMMU counter bank may be
changed. See IOMMU PASID Match Register [MMIO Offset [40-7F][0-F]10h]. Bit positions above the value
reported in MMIO Offset 4000h[NCounterBanks] are ignored when written and return zero when read. The
counter banks are numbered starting with zero; PASIDLock[0] controls bank 0, etc.

[AMD Public Use]

Registers 259

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register locks the corresponding Domain-match counter bank registers, IOMMU Domain Match
Register [MMIO Offset [40-7F][0-F]18h]. When a Domain-match register is locked, the register can
be read but writes are ignored.

Software Note: this register should be managed by trusted software.

This register locks the corresponding DeviceID-match counter bank registers, IOMMU DeviceID
Match Register [MMIO Offset [40-7F][0-F]20h]. When a DeviceID-match register is locked, the reg-
ister can be read but writes are ignored.

MMIO Offset 4010h IOMMU Counter Domain Bank-Lock Register

63 32

DomainLock[63:32]

31 0

DomainLock[31:0]

Bits Description

63:0 DomainLock: Domain lock enable. RW. Reset 0. 0 = Corresponding counter bank of Domain-match registers is
unlocked. 1 = locked (writes are ignored). For each bit in DomainLock, the corresponding Domain-match
registers in an IOMMU counter bank may be changed. See IOMMU Domain Match Register [MMIO Offset
[40-7F][0-F]18h]. Bit positions above the value reported in MMIO Offset 4000h[NCounterBanks] are ignored
when written and return zero when read. The counter banks are numbered starting with zero; DomainLock[0]
controls bank 0, DomainLock[1] controls bank 1, etc.

MMIO Offset 4018h IOMMU Counter DeviceID Bank-Lock Register

63 32

DevIDLock[63:32]

31 0

DevIDLock[31:0]

[AMD Public Use]

260 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Software Note: This register should be managed by trusted software.

3.4.22.2 MMIO Event Counter Configuration Registers
The following set of registers, MMIO Offset [40-7F][0-F]00h through MMIO Offset [40-7F][0-
F]28h, are organized as banks of counters spaced at 4-Kbyte page boundaries. There are a variable
number of counter registers and counter register banks implemented as specified in MMIO Offset
4000h[NCounterBanks, NCounter]. The MMIO addresses are decoded as shown in Figure 83.

The base address is the IOMMU MMIO base address defined by IOMMU Base Address Low Regis-
ter [Capability Offset 04h] and IOMMU Base Address High Register [Capability Offset 08h]. Note
that the use of IOMMU event counters affects the value programmed into IOMMU Base Address
Low Register [Capability Offset 04h].

Figure 83: IOMMU Counter Register Address Decode

Bits Description

63:0 DevIDLock: DeviceID lock enable. RW. Reset 0. 0 = Corresponding counter bank of DeviceID-match registers
is unlocked. 1 = locked (writes are ignored). For each bit in DevIDLock, the corresponding DeviceID-match
registers in an IOMMU counter bank may be changed. See IOMMU DeviceID Match Register [MMIO Offset
[40-7F][0-F]20h]. Bit positions above the value reported in MMIO Offset 4000h[NCounterBanks] are ignored
when written and return zero when read. The counter banks are numbered starting with zero.
DevIDLock[0] controls bank 0, etc.

63 32

BaseAddress[63:32]

31 19 18 17 12 11 8 7 6 0

BaseAddress[31:19] 1 BankNum CounterNum 0 Fxn

Table 81: Counter Bank Addressing (MMIO)

Bits Description

63:19 BaseAddress: Equal to bits 63:19 of the IOMMU base address programmed in the IOMMU Base Address Low
Register [Capability Offset 04h] and IOMMU Base Address High Register [Capability Offset 08h] registers.

18 Reserved. Must be set to 1.

17:12 BankNum: Bank number. Selects counter bank. The maximum value is defined by MMIO Offset
4000h[NCounterBanks].

11:8 CounterNum: Counter number. Selects counter within bank. The maximum value is defined by MMIO Offset
4000h[NCounter].

7 Reserved. Must be zero.

[AMD Public Use]

Registers 261

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Software Note: because each counter bank is aligned to a 4-Kbyte page, the counter banks can be
assigned to different guests for direct access after programming IOMMU Counter PASID Bank-Lock
Register [MMIO Offset 4008h], IOMMU Counter Domain Bank-Lock Register [MMIO Offset
4010h], and IOMMU Counter DeviceID Bank-Lock Register [MMIO Offset 4018h].

This register counts events as programmed by IOMMU Counter Source Register [MMIO Offset [40-
7F][0-F]08h] and IOMMU PASID Match Register [MMIO Offset [40-7F][0-F]10h].

When the ICounter value increments to zero, an event is optionally written to the event log (see
IOMMU Counter Report Register [MMIO Offset [40-7F][0-F]28h] and Section 2.5.11
[EVENT_COUNTER_ZERO Event]) and the counter continues incrementing. To cause an interrupt
at a threshold value, software must set ICounter to the 2’s complement of the desired threshold value.

6:0 Fxn: Function. This field selects the functional register within the counter set.
+00h: IOMMU Counter Register [MMIO Offset [40-7F][0-F]00h].
+08h: IOMMU Counter Source Register [MMIO Offset [40-7F][0-F]08h].
+10h: IOMMU PASID Match Register [MMIO Offset [40-7F][0-F]10h].
+18h: IOMMU Domain Match Register [MMIO Offset [40-7F][0-F]18h].
+20h: IOMMU DeviceID Match Register [MMIO Offset [40-7F][0-F]20h].
+28h: IOMMU Counter Report Register [MMIO Offset [40-7F][0-F]28h].
+30h through +78h: Reserved.
Bits 2:0 of the field must be zero.

MMIO Offset [40-7F][0-F]00h IOMMU Counter Register

63 48 47 32

Reserved ICounter[47:32]

31 0

ICounter[31:0]

Bits Description

63:48 Reserved.

47:28 ICounter. RW. Reset 0. Reports the counter value. The counter counts up continuously, wrapping at the
maximum value and continuing to count. There is no overflow indicator.

Table 81: Counter Bank Addressing (MMIO) (Continued)

Bits Description

[AMD Public Use]

262 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register selects an event source for the corresponding counter.

MMIO Offset [40-7F][0-F]08h IOMMU Counter Source Register

63 32

Reserved

31 30 29 8 7 0

C
A

C

C
ou

nt
U

ni
ts

Implementation-specific CSource[7:0]

Bits Description

63:32 Reserved.

31 CAC: Counter source architectural or custom. RW. Reset 0. Selects architectural counter input group (Table 82)
or custom input group. 0 = architectural counters as defined in Table 82. 1 = implementation-defined counters.
Software Note: Unless otherwise specified, selecting a counter marked Reserved returns undefined results.

30 CountUnits. RW. Reset 0. 0 = Counter counts events (level). 1 = Counter counts clocks (edges). Meaningful
when CAC = 0; implementation-specific when CAC = 1.

29:8 Implementation-specific: When CAC = 0, writes to this field are ignored and reads return 0. When CAC = 1,
this field is implementation-specific.

7:0 CSource: Counter source. RW. Reset 0. Selects event counter input from the choices in Table 82 when CAC =
0; selects an implementation-specific counter input when CAC = 1.

[AMD Public Use]

Registers 263

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

The IOMMU Counter Register [MMIO Offset [40-7F][0-F]00h] is incremented when IOMMU
PASID Match Register [MMIO Offset [40-7F][0-F]10h], IOMMU Domain Match Register [MMIO
Offset [40-7F][0-F]18h], and IOMMU DeviceID Match Register [MMIO Offset [40-7F][0-F]20h]
match or are ignored.

Table 82: Architectural Counter Input Group, CAC = 0b

CSource
(decimal)

Architectural Counter Input Group Selection

0 No events. Note: CountUnits = 0 stops the counter and CountUnits = 1 is a free-run counter.

1 Peripheral memory operations passed-through, untranslated.

2 Peripheral memory operations passed-through, pretranslated.

3 Peripheral memory operations passed-through, via Exclusion Range.

4 Peripheral memory operations target aborted.

5 Peripheral memory operations translated, total.

6 Peripheral memory operations translated, IOMMU TLB hit PTE.

7 Peripheral memory operations translated, IOMMU TLB missed PTE.

8 Peripheral memory operations translated, IOMMU TLB hit PDE.

9 Peripheral memory operations translated, IOMMU TLB missed PDE.

10 Peripheral memory operations, DTE cache hit.

11 Peripheral memory operations, DTE cache miss.

12 IOMMU page table read operations due to memory translation, total.

13 IOMMU page table read operations due to memory translations, nested.

14 IOMMU page table read operations due to memory translations, guest.

15 Peripheral interrupt operations remapped, DTE cache hit.

16 Peripheral interrupt operations remapped, DTE cache miss.

17 IOMMU commands processed (total).

18 IOMMU commands processed, invalidations (total).

19 IOMMU TLB invalidations (total).

20 Reads and writes from/to IOMMU Reserved Register [MMIO Offset 1FF8h] that are ignored.

21 Peripheral interrupts for guest virtual APIC, IRTE[GuestMode] = 0b (see Figure 17 on page 95 and
Table 22 on page 95).

22 Peripheral interrupts for guest virtual APIC, IRTE[GuestMode] = 1b (see Figure 18 on page 96 and
Table 23 on page 96).

23 SMI interrupt requests received (see Section 2.1.5.2 [SMI Filter Address Format]).

24 SMI interrupt requests matched and blocked (see Section 2.1.5.1 [SMI Filter Operation]).

25-255 Reserved (treated as CSource = 0 and CountUnits = 0).

[AMD Public Use]

264 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register contains the PASID filter mask and the PASID for which to count events in the corre-
sponding counter register. The incoming PASID is ANDed with the PASIDMask field and the result
is compared to the PASIDMatch field. If the comparison result is the same value, the event is enabled
to be counted in the corresponding counter.

MMIO Offset [40-7F][0-F]10h IOMMU PASID Match Register

63 52 51 48 47 32

Reserved PASIDMask

31 30 20 19 16 15 0

P
A

S
M

E
n

Reserved PASIDMatch

Bits Description

63:52 Reserved

51:32 PASIDMask. RW. Reset 0. This bit-mask is ANDed with the PASID of the transaction to decide to count the
corresponding event.
0 = count events for all values of incoming PASID.
0_0001h–F_FFFFh = bit-wise mask ANDed with incoming PASID.

31 PASMEn: PASID match enable. RW. Reset 0. 0 = PASID is ignored. 1 = Filtered PASID must match to count
an event. An event with no PASID tag is only counted when PASMEn = 0.

30:20 Reserved.

19:0 PASIDMatch. RW. Reset 0. This value is compared to the masked (filtered) value of the incoming PASID of
the transaction to decide to count the corresponding event. The event is counted if PASIDMatch is equal to the
masked incoming PASID; the event is not counted if they are not equal.

[AMD Public Use]

Registers 265

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register contains the Domain filter mask and the Domain for which to count events in the corre-
sponding counter register. The incoming Domain is ANDed with the DomainMask field and the result
is compared to the DomainMatch field. If the comparison result is the same value, the event is
enabled to be counted in the corresponding counter.

MMIO Offset [40-7F][0-F]18h IOMMU Domain Match Register

63 48 47 32

Reserved DomainMask

31 30 16 15 0

D
om

M
E

n

Reserved DomainMatch

Bits Description

63:48 Reserved.

47:32 DomainMask. RW. Reset 0. This bit-mask is ANDed with the Domain of the transaction to decide to count the
corresponding event.
0 = count events for all values of incoming Domain.
0001h–FFFFh = bit-wise mask ANDed with incoming Domain.

31 DomMEn: Domain match enable. RW. Reset 0. 0 = Domain is ignored. 1 = Filtered. Domain must match to
count an event.

30:16 Reserved.

15:0 DomainMatch. RW. Reset 0. This value is compared to the masked (filtered) value of the incoming Domain of
the transaction to decide to count the corresponding event. The event is counted if DomainMatch is equal to the
masked incoming PASID; the event is not counted if they are not equal.

[AMD Public Use]

266 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

This register contains the DeviceID filter mask and the DeviceID for which to count events in the cor-
responding counter register. The incoming DeviceID is ANDed with the DeviceIDMask field and the
result is compared to the DeviceIDMatch field. If the comparison result is the same value, the event is
enabled to be counted in the corresponding counter.

MMIO Offset [40-7F][0-F]20h IOMMU DeviceID Match Register

63 48 47 32

Reserved DeviceIDMask

31 30 16 15 0

D
ID

M
E

n

Reserved DeviceIDMatch

Bits Description

63:48 Reserved.

47:32 DeviceIDMask. RW. Reset 0. This bit-mask is ANDed with the DeviceID of the transaction to decide to count
the corresponding event.
0 = count events for all values of incoming DeviceID.
0001h-FFFFh = bit-wise mask ANDed with incoming DeviceID.

31 DIDMEn: DeviceID match enable. RW. Reset 0. 0 = DeviceID is ignored. 1 = Filtered DeviceID must match to
count an event.

30:16 Reserved.

15:0 DeviceIDMatch. RW. Reset 0. This value is compared to the masked (filtered) value of the incoming DeviceID
of the transaction to decide to count the corresponding event. The event is counted if DeviceIDMatch is equal to
the masked incoming DeviceID; the event is not counted if they are not equal.

[AMD Public Use]

Registers 267

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

This register hold information for the optional event log entry generated when the event counter
wraps to zero. The counters continue to count after they wrap to zero.

MMIO Offset [40-7F][0-F]28h IOMMU Counter Report Register

63 62 52 51 32

C
E

R
E

Reserved EventNote[51:32]

31 0

EventNote[31:0]

Bits Description

63 CERE: Counter Event Report Enable. RW. Reset 0. 0 = no event report when counter wraps to zero. 1 =
IOMMU writes an EVENT_COUNTER_ZERO event log entry when the counter wraps to zero. The counter-
wrap event is treated like any other event (see Section 2.5 [Event Logging]).
Software Note: the counter-wrap event is delivered promptly but without a latency guarantee.

62:52 Reserved.

51:0 EventNote. RW. Reset 0_0000_0000_0000h. When CERE = 1 and the corresponding counter is incremented
and wraps to zero, EventNote[51:0] is reported in the EVENT_COUNTER_ZERO event log entry (see Section
2.5.11 [EVENT_COUNTER_ZERO Event]).

[AMD Public Use]

268 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

3.5 IOMMU Virtual Function Controls MMIO Registers
The IOMMU Virtual Function Control MMIO registers are mapped using the IOMMU Virtual Func-
tion Control Base Address Low Register and IOMMU Virtual Function Control Base Address High
Register. Software access to IOMMU Virtual Function Controls MMIO registers using either 1DW or
2DW access. Access address must be size aligned.

Each guest takes up a contiguous 64B space in this region which aligned to 64B address. GuestID is a
16-bit value.

Software must program this register as a single 2DW access or program the lower DW follow imme-
diately by upper DW before programming other registers.

The register defines the mapping between the guest Device ID and the system Device ID. If the guest
owns N number of devices, software must program this register N times with W=1 to cycle through
the N guest device ID and its corresponding system DeviceID and QueueID.

Software must program this register as a single 2DW access or program the lower DW follow imme-
diately by upper DW before programming other registers.

The register defines the mapping between the guest Domain ID and the system Domain ID. If the

VFCntlMMIO Offset {16’b[GuestID], 6’b00_0000} Guest Device Map Control Register

63 62 61 46 45 32

W

R
e

se
rv

ed

GDeviceID[15:0] QueueID[15:2]

31 30 29 14 13 1 0

Q
ue

ue
ID

[1
:0

]

DeviceID[15:0] Reserved V
ld

Bits Description

63 W. Write-Only. Commit the programming of DeviceID mapping across the 2DW.

62 Reserved

61:46 GDeviceID[15:0]. The guest device ID.

45:30 QueueID[15:0]. The Queue ID across the system in Invalidate IOTLB Page command. This is used in IOMMU
to limit the number of outstanding iotlb invalidations to a given queue.

29:14 DeviceID[15:0]. The system device ID.

13:1 Reserved

0 Vld. Indicate the device mapping for the guest is valid.

VFCntlMMIO Offset {16’b[GuestID], 6’b00_1000} Guest Domain Map Control Register

[AMD Public Use]

Registers 269

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

guest has N number of domain, software must program this register N times with W=1 to cycle
through the N guest domain ID and its corresponding system DomainID.

63 62 61 46 45 32

W

R
es

er
ve

d

GDomain[15:0] Reserved

31 30 29 14 13 1 0

R
sv

d[
1:

0]

DomainID[15:0] Reserved V
ld

Bits Description

63 W. Write-Only. Commit the programming of DeviceID mapping across the 2DW.

62 Reserved

61:46 GDeviceID[15:0]. The guest domain ID.

45:30 Reserved

29:14 DeviceID[15:0]. The system domain ID.

13:1 Reserved

0 Vld. Indicate the domain mapping for the guest is valid.

VFCntlMMIO Offset {16’b[GuestID], 6’b01_0000} Guest Miscellaneous Control Register

63 32

Reserved

31 16 15 13 12 1 0

DeviceID Reserved

Bits Description

63:32 Reserved

31:16 DeviceID. The system deviceID which has the entire guest GPA to SPA translation.

15:0 Reserved

[AMD Public Use]

270 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

VFCntlMMIO Offset {16’b[GuestID], 6’b01_1000} Guest Event LogB Buffer Control Register

63 52 51 32

Reserved EventLogBbase[51:12]

31 12 11 0

EventLogBbase[51:12] Reserved

Bits Description

63:52 Reserved

51:12 EventLogBbase[51:12]. Specifies the Guest Physical Base Address of Guest Event LogB Buffer. The GPA will
be translated to an SPA by the IOMMU using the Guest's nested page table. (See Section 2.2.3, “I/O Page
Tables for Host Translations” on page 79.) The base address must be aligned to 4KB. This field is reserved with
MMIO Offset 0018h[GstBufferTRPMode]=0.

11:0 Reserved

VFCntlMMIO Offset {16’b[GuestID], 6’b10_0000} Guest Command Control Register

63 52 51 32

Reserved ComBase[51:32]

31 12 11 10 9 8 7 4 3 0

ComBase[31:12]

R
es

er
ve

d

C
o

m
W

a
itI

nt
E

n

C
m

dB
uf

E
n

Reserved CmdLen[3:0]

Bits Description

63:52 Reserved

51:12 ComBase[51:12]: Specifies the Guest Physical Base Address of Guest Command Buffer. The GPA will be
translated to an SPA by the IOMMU using the Guest's nested page table. (See Section 2.2.3, “I/O Page Tables
for Host Translations” on page 79.) The base address must be aligned to 4KB. This field is reserved with MMIO
Offset 0018h[GstBufferTRPMode]=0.

11:10 Reserved

9 ComWaitIntEn: Completion wait interrupt enable for this guest.
Refer to IOMMU MMIO Offset 0018h[CmWaitIntEn].

8 CmdBufEn: Command buffer enable for this guest. Refer to IOMMU MMIO Offset 0018h[CmdBufEn].

[AMD Public Use]

Registers 271

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

7:4 Reserved

3:0 CmdLen: Command buffer length for this guest. Refer to IOMMU MMIO Offset 0008h[ComLen].

VFCntlMMIO Offset {16’b[GuestID], 6’b10_1000} Guest Event Control Register

63 52 51 32

Reserved EventBase[51:32]

31 12 11 10 9 8 7 4 3 0

EventBase[31:12]

D
ua

lE
ve

nt
Lo

gE
n

E
ve

nt
In

tE
n

E
ve

nt
Lo

gE
n

EventBLen
[3:0]

EventLen[3:0]

Bits Description

63:52 Reserved

51:12 EventBase[51:12]: Specific the Guest Physical Base Address of Guest Event Log Buffer. The GPA will be
translated to an SPA by the IOMMU using the Guest's nested page table. (See Section 2.2.3, “I/O Page Tables
for Host Translations” on page 79.) The base address must be aligned to 4KB. This field is reserved with MMIO
Offset 0018h[GstBufferTRPMode]=0.

11:10 DualEventLogEn: Dual event log enable for this guest.
Refer to IOMMU MMIO Offset 0018h[DualEventLogEn].

9 EventIntEn: Event log interrupt enable for this guest. Refer to IOMMU MMIO Offset 0018h[EventIntEn].

8 EventLogEn: Event log enable for this guest. Refer to IOMMU MMIO Offset 0018h[EventLogEn].

7:4 EventBLen: Event log B length for this guest. Refer to IOMMU MMIO Offset 00F8h[EventLogBLen].

3:0 EventLen: Event log length for this guest. Refer to IOMMU MMIO Offset 0010h[EventLen].

Bits Description

[AMD Public Use]

272 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

VFCntlMMIO Offset {16’b[GuestID], 6’b11_0000} Guest PPR Control Register

63 56 55 32

Reserved PPRLogBase[51:28]

31 16 15 14 13 12 11 10 9 8 7 4 3 0

PPRLogBase[27:12]

P
pr

A
ut

oR
sp

A
on

B
lk

S
to

p
M

rk
E

n

P
pr

A
ut

oR
sp

E
n

D
ua

lP
pr

Lo
gE

n

P
pr

E
n

P
pr

In
tE

n

P
pr

Lo
gE

n

PprBLen PprLen

Bits Description

63:56 Reserved

55:16 PPRLogBase[51:12]: Specific the Guest Physical Base Address of Guest PPR Log Buffer. The GPA will be
translated to an SPA by the IOMMU using the Guest's nested page table. (See Section 2.2.3, “I/O Page Tables
for Host Translations” on page 79.) The base address must be aligned to 4KB. This field is reserved with MMIO
Offset 0018h[GstBufferTRPMode]=0.

15 PprAutoRspAon: Peripheral Page Request Auto Response for this guest.
Refer to IOMMU MMIO Offset 0018h[PprAutoRspAon].

14 BlkStopMrkEn: Block StopMark message feature enable for this guest.
Refer to IOMMU MMIO Offset 0018h[BlkStopMrkEn].

13 PprAutoRspEn: Peripheral Page Request Automatic Response feature enable for this guest. Refer to IOMMU
MMIO Offset 0018h[PprAutoRspEn].

12:11 DualPprLogEn: Dual Peripheral Page Request Log enable for this guest.
Refer to IOMMU MMIO Offset 0018h[DualPprLogEn].

10 PprEn: Peripheral page request processing enable for this guest.
Refer to IOMMU MMIO Offset 0018h[PPREn].

9 PprIntEn: Peripheral page request interrupt enable for this guest. This value contains the guest vIOMMU
MMIO Offset 0018h[PprIntEn].

8 PprLogEn: Peripheral page request log enable for this guest.
Refer to IOMMU MMIO Offset 0018h[PPRLogEn].

7:4 PprBLen: Peripheral page Request B log length for this guest.
Refer to IOMMU MMIO Offset 00F0h[PprBLen].

3:0 PprLen: Peripheral page request log length for this guest.
Refer to IOMMU MMIO Offset 0038h[PPRLogLen].

[AMD Public Use]

Registers 273

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

3.6 IOMMU Virtual Function MMIO Registers
The IOMMU Virtual Function MMIO region contains all the Command/Event Log/PPR Pointer Reg-
isters, Command/Event Log/PPR Log Status Registers and PPR Overflow Protection Registers for all
the guests.

Each guest takes up a contiguous 4K space in this region which aligned to 4K address. GuestID is a
unique 16-bit value associated with a Guest VM.

VFMMIO Offset {16’b[GuestID], 12’h0000h} Command Buffer Head Pointer Register for GuestID.

(Register definition is the same as MMIO Offset 2000h.)

VFMMIO Offset {16’b[GuestID], 12’h0008h} Command Buffer Tail Pointer Register for GuestID.

(Register definition is the same as MMIO Offset 2008h.)

VFMMIO Offset {16’b[GuestID], 12’h0010h} Event Log Head Pointer Register for GuestID.

(Register definition is the same as MMIO Offset 2010h.)

VFMMIO Offset {16’b[GuestID], 12’h0018h} Event Log Tail Pointer Register for GuestID.

(Register definition is the same as MMIO Offset 2018h.)

VFCntlMMIO Offset {16’b[GuestID], 6’b11_1000} Guest PPRB Control Register

63 52 51 32

Reserved PPRLogBbase[51:32]

31 12 11 0

PPRLogBbase[31:12] Reserved

Bits Description

63:52 Reserved

51:12 PPRLogBbase[51:12]: Specifies the Guest Physical Base Address of Guest PPRLogB Buffer. The GPA will be
translated to an SPA by the IOMMU using the Guest's nested page table. (See Section 2.2.3, “I/O Page Tables
for Host Translations” on page 79.) The base address must be aligned to 4KB. This field is reserved with MMIO
Offset 0018h[GstBufferTRPMode]=0.

11:0 Reserved

[AMD Public Use]

274 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

VFMMIO Offset {16’b[GuestID], 12’h0020h} vIOMMU Status Register for GuestID.

(Register definition is the same as MMIO Offset 2020h except bit 10:8 are marked as reserved.)

VFMMIO Offset {16’b[GuestID], 12’h0030h} IOMMU PPR Log Head Pointer Register for GuestID.

(Register definition is the same as MMIO Offset 2030h.)

VFMMIO Offset {16’b[GuestID], 12’h0038h} IOMMU PPR Log Tail Pointer Register for GuestID.

(Register definition is the same as MMIO Offset 2038h.)

VFMMIO Offset {16’b[GuestID], 12’h0040h} Reserved.

VFMMIO Offset {16’b[GuestID], 12’h0048h} Reserved.

VFMMIO Offset {16’b[GuestID], 12’h0050h} PPR Log B Head Pointer Register for GuestID.

(Register definition is the same as MMIO Offset 2050h.)

VFMMIO Offset {16’b[GuestID], 12’h0058h} PPR Log B Tail Pointer Register for GuestID.

(Register definition is the same as MMIO Offset 2058h.)

VFMMIO Offset {16’b[GuestID], 12’h0070h} Event Log B Head Pointer Register for GuestID.

(Register definition is the same as MMIO Offset 2070h.)

VFMMIO Offset {16’b[GuestID], 12’h0078h} Event Log B Tail Pointer Register for GuestID.

(Register definition is the same as MMIO Offset 2078h.)

VFMMIO Offset {16’b[GuestID], 12’h0080h} PPR Log Auto Response Register for GuestID.

(Register definition is the same as MMIO Offset 2080h.)

VFMMIO Offset {16’b[GuestID], 12’h0088h} PPR Log Overflow Early Indicator Register for GuestID.

(Register definition is the same as MMIO Offset 2088h.)

[AMD Public Use]

Registers 275

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

VFMMIO Offset {16’b[GuestID], 12’h0090h} PPR Log B Overflow Early Indicator Register for
GuestID.

(Register definition is the same as MMIO Offset 2090h.)

[AMD Public Use]

276 Registers

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

[AMD Public Use]

Implementation Considerations 277

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

4 Implementation Considerations

This chapter discusses issues that are primarily of concern to IOMMU implementers.

The IOMMU specification is intended to allow a wide range of implementations with different cost
and performance trade-offs. Potential implementation technology may range from ASIC to full cus-
tom. Capacity and organization of the IOMMU’s translation caches can vary substantially depending
on technology, die budgets, and product requirements. The IOMMU can be integrated with a chipset
(typically as part of some existing interconnect bridge) or built as a standalone component (which can
act as a HyperTransport™ bridge or tunnel).

4.1 Caching and Invalidation Strategies
All IOMMU implementations should have some form of translation cache that allows the IOMMU to
determine the disposition of device accesses quickly without having to re-walk the IOMMU tables for
each separate device access. The translation cache is likely to be the largest portion of the IOMMU’s
die area budget in all but the smallest implementations. Consequently the IOMMU specification has
been written to allow flexibility in the design of the translation cache.

Plausible implementations range from direct mapped RAM structures to fully associative CAM struc-
tures, with the expectation that most implementations are set associative. Furthermore, implementers
may choose to flatten the multi-stage IOMMU table walk into a single cache array lookup, or, alterna-
tively, may choose to use a similar multi-stage organization for internal translation cache lookups.

The IOMMU’s translation cache must support the following operations:
• Lookup — when the IOMMU processes an access by a particular device to a specified DVA, it

applies protection checks and translation transformations using information obtained using
DeviceID and DVA.

• Invalidate device — discard any translation cache contents that depend on a specific Device Table
entry.

• Invalidate virtual address (within domain) — discard any cached translations for a virtual address
within the specified domain.

Typical IOMMU implementations are likely to be built with ASIC design flows, where CAM cells
are expensive compared to RAM cells. The main implication of this is that direct support for different
page sizes is likely to require a combination of separate arrays and/or multiple entries within arrays,
causing both fills and invalidations to require time-consuming search-and-destroy algorithms.

The IOMMU is designed to support three main usage models:
• Direct user process access to a single device like a graphics controller;
• Direct virtual machine guest access to a collection of devices that have been dedicated to that

guest; and
• A single non-virtualized OS using the IOMMU to enforce device to system memory access

controls.

[AMD Public Use]

278 Implementation Considerations

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

When a user process directly controls a single device, the total memory footprint for the device’s
accesses is likely to be a modest fraction of the process’s own memory footprint. Moreover, the user
process has direct knowledge of the specific device, so there is a good chance that the device’s access
pattern is controllable for good locality. In this case the main consideration for achieving performance
is to ensure that the IOMMU translation cache is large enough.

By contrast, the potential memory footprint of a virtual machine guest’s devices is the entire memory
of the guest. Often the access pattern may be poorly controlled, as determined by the guest operating
system’s workload (of which the HV likely has no specific knowledge), and, moreover, consists of
interactions with a variety of devices under the control of different guest device drivers and subsys-
tems, with diverse memory allocation strategies. In the case of a non-paravirtualized guest, a HV’s
strategy for improving performance is probably to set up I/O page tables using the largest available
page size and assume that the IOMMU can share the same translation cache entries among multiple
devices. It is for this reason that the IOMMU table structure includes a DomainID that can be shared
for multiple DeviceIDs: since the IOMMU uses translation cache entries tagged by {DomainID, I/O
virtual address} it automatically shares translations among multiple devices assigned to the same
domain.

Based on these considerations, designers should consider a two-stage organization for the IOMMU
translation cache:
• The first stage should map DeviceID to {DomainID, I/O page table base address}. Most systems

have only a few distinct DeviceIDs, so the capacity of the first stage can be small. The one
complication is that DeviceIDs are not very random and tend to be clustered, so, to avoid
conflicts, this stage should either be highly associative or use a good DeviceID hash function.

• The second stage should map {DomainID, DVA} to {system physical address, protection}. This
stage should have (at least) hundreds of entries. This stage should explicitly include the
DomainID in set index hashing (rather than just using the DomainID as a tag), so that different
domains with similar memory layouts do not compete for the same translation cache entries.
(Server consolidation environments are likely to create many domains with very similar memory
layouts.)

In addition, since the latency of IOMMU access to system memory can be high, implementers should
consider a page directory cache (PDC) to accelerate processing of translation cache misses. This
cache should map {DomainID, DVA} to page directory entry (PDE), so that the IOMMU can quickly
calculate the address of the final PTE needed to resolve a translation cache miss. This way, most
translation cache misses can be resolved in a single memory access by the IOMMU, rather than
requiring a full multi-stage table walk. The page directory cache could also double as a large-page
translation cache, since for large pages the PDE is also the PTE.

4.2 IOMMU Topologies
The IOMMU’s architecture is designed to accommodate a variety of system fabrics and topologies.
There can be multiple IOMMUs, located at a variety of places in the system fabric. Some requestor
ID information can be lost at bridges between busses or bus types, so it is advantageous to locate
IOMMUs in bridges. The mapping of bus requesterIDs to IOMMU DeviceIDs depends on both the

[AMD Public Use]

Implementation Considerations 279

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

bus type as well as the IOMMU’s location in the system fabric. In most other respects, the IOMMU’s
behavior is bus-independent.

The most basic implementation of the IOMMU takes the form of a HyperTransport™ tunnel.

Figure 84: IOMMU in a Tunnel

The advantage of this approach is that it can be easily retrofitted to an existing system design. The
main limitation of this approach is that the HyperTransportTM specification defines only 5 bits of
UnitID information to identify the originators of requests, so the IOMMU can provide distinct trans-
lations for at most 31 downstream devices. If downstream nodes include any bridges, the IOMMU is
unable to distinguish between different devices beyond the bridges, since bridged requests use the
UnitID of the bridge.

A possible solution is to include a separate IOMMU on each downstream bus; each IOMMU can then
be programmed not to rewrite transactions whose UnitID proves they have already passed through
another IOMMU. Software must understand the system topology to correctly coordinate multiple
IOMMUs. If a downstream HyperTransport device is a PCIe® root complex or a PCI-X® host bridge,
the device can implement the RequesterID mapping capability to assign specific UnitIDs to PCIe or
PCI-X devices.

An IOMMU implemented in a PCIe- or PCI-X-to-HyperTransport bridge can exploit the larger PCIe
or PCI-X RequesterID namespace to provide better discrimination between downstream devices
when translating requests:

Figure 85: IOMMU in a Peripheral Bus Bridge

Since most future commodity devices are expected to be on a PCIe bus, this is likely to be the most
common implementation of the IOMMU for low-cost systems.

Large systems may want a scalable IOMMU building block. Such systems may choose to implement
a hybrid HyperTransport tunnel / PCIe root complex component or a HyperTransport tunnel / PCI-X
host bridge component combining the above ideas:

IOMMU

HyperTransportTM link

raw requests from devices

HyperTransport link

translated requests to host

UnitID[4:0]

DeviceID[15:0]

IOMMU

PCIe®/PCI-X® protocol

raw requests from devices

HyperTransportTM link

translated requests to host

Bus[7:0] Dev[4:0] Func[2:0]

DeviceID[15:0]

[AMD Public Use]

280 Implementation Considerations

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Figure 86: Hybrid IOMMU

Hybrid IOMMUs can be chained together to build large systems:

Figure 87: Chained Hybrid IOMMU in a Large System

4.3 Issues Specific to the HyperTransport™ Architecture
This section discusses implementation considerations that are specific to IOMMUs attached to a
HyperTransport link.

The HyperTransport specification requires devices (especially tunnels and bridges) to interoperate
with other devices in ways that ensure correctness and maintain performance. Among other require-
ments, HyperTransport devices must make certain transaction ordering guarantees and must ensure
they operate without deadlocks.

A key requirement in the HyperTransport specification is that posted requests must be able to pass
non-posted requests. The introduction of the IOMMU, however, means that posted requests (e.g.
writes to memory) may spawn non-posted requests (I/O page table walks) that must complete before
the posted request can be allowed to progress further.

To avoid deadlocks, the IOMMU requires a dedicated virtual channel for its I/O page table walk
requests. This ensures that, the IOMMU’s page table walks on behalf of posted requests can com-

IOMMU

HyperTransportTM protocol

raw requests from devices

HyperTransport protocol

translated requests to host

UnitID[4:0]

ra
w

 r
e

qu
e

st
s

 PCIe®/PCI-X®
protocol

Bus[7:0] Dev[4:0] Func[2:0]

DeviceID[15:0]

IOMMU

PCIe®/PCI-X® bus

IOMMU

PCIe/PCI-X bus

Processor
HyperTransport

link
HyperTransport™

link

[AMD Public Use]

Implementation Considerations 281

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

plete, regardless of the completion status of other non-posted traffic in the fabric. The IOMMU also
requires that the host bridge process its requests without spawning any requests to other devices. In
other words, the IOMMU’s table structures must be located solely in system memory.

The IOMMU can share its virtual channel with other traffic as long the other traffic is also guaranteed
to make forward progress. In practice, this means that any other devices sharing the IOMMU’s page
walk channel must also restrict their non-posted traffic solely to accessing system memory.

To allow the IOMMU to support different AMD processors with different isochronous capabilities
the IOMMU control registers contain bits that control the state of the PassPW bits, the coherent bit
and the isochronous bit in the HyperTransport™ link read request issued by the IOMMU.

4.4 Chipset Specific Implementation Issues
Chipsets that implement both an IOMMU and a legacy PCI or AGP bridge must provide source iden-
tification to identify uniquely DMA traffic as originating from the PCI or AGP bus.To provide this
identification, the IOMMU must use the requesterID of the PCI or AGP bridge to perform transla-
tions for DMA transactions from the legacy bus. The Device legacy ID information must be reported
via appropriate ACPI or Device Tree table entries. Details are in Section 5.2.2 [I/O Virtualization
Definition Blocks].

4.5 Software and Platform Firmware Implementation Issues
Because of the flexible architecture of the IOMMU, it is unlikely that any single system software
implementation uses all the features, topologies, or options. The following constraints are strongly
recommended:
• An IOMMU should be a root-complex device (i.e., appear directly on the bus at the top of the PCI

tree hierarchy).
• Some system software may prohibit an IOMMU from appearing under a PCI-to-PCI bridge.
• To ensure the IOMMU is recognized and configured properly, the platform firmware should

perform the initial configuration of the IOMMU so that it is accessible to system software when
control is handed off by the platform firmware.

• The platform firmware should describe the IOMMU in an ACPI table as defined in Chapter 5,
"I/O Virtualization ACPI Table". The table must include all information necessary to identify,
configure, and access the IOMMU. It is recommended that System software retrieves IOMMU
hardware information from ACPI and Firmware tables, in descending order of priority from
Type11h table, if not available to Type10h IVHD tables, finally evaluating IOMMU MMIO
feature registers if no other property is available or accessible.

• System firmware must ensure the IOMMU configuration is preserved or restored across power-
management state changes.

[AMD Public Use]

282 Implementation Considerations

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

[AMD Public Use]

I/O Virtualization ACPI Table 283

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

5 I/O Virtualization ACPI Table

The architecture defines an ACPI-compatible data structure called an I/O Virtualization Reporting
Structure (IVRS) that is used to convey information related to I/O virtualization to system software.
The IVRS describes the configuration and capabilities of the IOMMUs contained in the platform as
well as information about the devices that each IOMMU virtualizes.

The IVRS provides information about the following:

• IOMMUs present in the platform including their capabilities and proper configuration
• System I/O topology relevant to each IOMMU
• Peripheral devices that cannot be otherwise enumerated
• Memory regions used by SMI/SMM, platform firmware, and platform hardware. These are

generally exclusion ranges to be configured by system software.

Software Implementation Note: Information conveyed in the IVRS overrides the corresponding
information available through the IOMMU hardware registers. System software is required to honor
the ACPI settings.

The IVRS is created in memory by the platform firmware. There are two formats for the IVRS, one
that supports fixed DeviceID I/O devices only and a second format that supports both fixed DeviceID
devices and ACPI Hardware ID (HID) devices. System software must be capable of handling both
formats. The Revision field in the IVRS header identifies the format of a given IVRS. Note: This
revision number does not correspond to a revision level of the IOMMU implementation.

Following the header, the IVRS contains one or more I/O Virtualization Definition Blocks (IVDBs).
There are two types of IVDBs:

1. I/O Virtualization Hardware Definition (IVHD) block.
An IVHD provides specific information about each IOMMU in the platform and the devices
attached downstream of the IOMMU.

2. I/O Virtualization Memory Definition (IVMD) block.
An IVMD is used to describe any special memory constraints.

Figure 88: Example Platform Architecture

HT Host
Bridge

System
DRAM

CPU core

I/O Hub

IOM M U

Device Device

LPC

PCI

SATA

IO APIC

HPET

PCIePCIe®

[AMD Public Use]

284 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

In the example system shown in Figure 88, there is a single IOMMU and all the I/O devices are
attached downstream. Assuming that firmware has pre-assigned I/O device IDs, the pertinent I/O Vir-
tualization information can be described using a single IVHD (type = 10h or 11h) block to define the
IOMMU and its attached I/O devices. IVHD device entries define the entire range of peripherals
(DeviceID 0h through DeviceID FFFFh), probably as a range, (see IVHD device entry types 3 and 4
in Table 103 and IVHD device entry type 71 in Table 105) and IVHD special device entries for the
IOAPIC and for the HPET (see IVHD device entry type 72 in Table 105).

In a system where one or more I/O devices are identified using the ACPI HID format, the IVRS con-
tains a Type 40h IVHD block that may contain both fixed length device entries and variable length
device entries to define the entire range of peripherals. Variable length device entries use the ACPI
HID device format (See Table 108.) The IOAPIC is require to boot, so it is reported as an IVHD spe-
cial device entry; the HPET is not required for boot so it can be reported as an IVHD special device
entry if it is assigned a BDF by the boot program or as a special device entry if it is not assigned a
BDF.

5.1 IOMMU Control Flow
The IOMMU start-up procedure flows through several stages. In general, the IOMMU PCI configura-
tion space is initially configured by the platform firmware and later the primary operational manipu-
lations are done by (privileged) system software. Some settings are programmed into the IOMMU
hardware at design time (e.g., virtual address size, physical address size, MSI interrupts). Certain
hardware features can be overridden by the platform designer and so are defined in ACPI settings
(e.g., the exclusion range, remote IOTLB support), such as when certain features are not included in
platform qualification testing or are reserved for use by the platform firmware.

At system reset, the IOMMU is set to a default state. Following system reset, platform firmware is
able to program essential platform-specific information into the IOMMU, mostly through the PCI
configuration space registers (for example, the MMIO base address). Some additional settings are
made by the platform firmware in the MMIO space (for example, tunnel enable) while other settings
are made by system software in the MMIO space (for example, the coherent bit). Finally, system soft-
ware must initialize and manage IOMMU control and operational tables allocated in memory (for
example, the device tables). Some of these control and operational settings must be configured
according to policies determined by the platform firmware, so they are communicated to system soft-
ware via the ACPI tables (these include selected interrupt controls and system management controls).

Once configuration is complete, the IOMMU is enabled by system software and begins processing
transactions from peripherals. From this point, the IOMMU is under the control of the system soft-
ware. See “Starting the IOMMU” on page 120 for more information on starting the IOMMU.

Software Note: Although this specification allows the placement of IOMMUs outside the root com-
plex, current platform implementations are cautioned against such designs. This architecture does not
currently define the ACPI methods or data structures necessary to hot-plug a peripheral controller
containing an IOMMU.

5.2 I/O Virtualization Reporting Structure (IVRS)
The I/O Virtualization Reporting Structure (IVRS) is the ACPI-compatible data structure used to

[AMD Public Use]

I/O Virtualization ACPI Table 285

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

report the configuration and capabilities of each IOMMU in a platform. There is a single I/O Virtual-
ization Reporting Structure (IVRS) in a system that contains one or more IOMMUs.

Table 83 shows a top-level view of the format of the IVRS. Bytes 0–47 provide header information
fields. The Length field gives the overall length of the data structure including the length of the
header.

Following the 48-byte header, the IVRS contains one or more IVDBs. IVDBs are packed in the IVRS
data structure; no padding is allowed. Two types of IVDBs are defined: the IVHD and the IVMD.

Three types of IVHD blocks are defined:

• Types 10h and 11h which support fixed DeviceID device entries only.
• Type 40h which adds support for ACPI HID device entries.

The type 10h IVHD block is defined for backward compatibility and supports the reporting of legacy
IOMMU properties to legacy System Software. configuration and capabilities. In order to use the full
set of features of the IOMMU, system software must support the decoding of Type 11h and 40h
IVHDs. The IVHD Type11h contains all relevant IOMMU feature information. It is recommended
for system software to detect IOMMU features from the fields in the IVHD Type11h structure infor-
mation, superseding information in Type10h block and MMIO registers.

Three types of IVMDs are defined: IVMD types 20h, 21h, and 22h

The inclusion of IVMDs in the IVRS is optional. Each IVMD, if present, provides memory range
information related to the IVHD that immediately precedes it. IVMDs may be used for both fixed
DeviceID and ACPI HID named devices.

Software Implementation Note: In order to use the full set of features of the IOMMU, system soft-
ware must support the decoding of Type 11h and 40h IVHDs.

Table 83: I/O Virtualization Reporting Structure (IVRS)

Byte
Offset

I/O Virtualization Reporting Structure (IVRS)

00 Signature (“IVRS”) Length (bytes)

08 Revision Check OEM ID

16 OEM Table ID

24 OEM Revision Creator ID

32 Creator Revision IVinfo

40 Reserved (0000_0000_0000_0000h)

48 I/O Virtualization Definition Blocks (IVDBs)

— Additional IVDBs, as required.

Offset: 0 1 2 3 4 5 6 7

[AMD Public Use]

286 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

5.2.1 IVRS Header Fields
Table 84 defines the fields of the IVRS headers. Table 85 further describes the Revision field and
Table 86 describes the sub-fields of the IVInfo field.

Table 84: IVRS Fields

IVRS field
name

Offset Size
(bytes)

Value Definition

Signature 00 4 “IVRS” I/O Virtualization Reporting Structure signature (ASCII)

Length 04 4 Length
in bytes

Length in bytes of the entire IVRS, including IVDBs
(IVHD and optional IVMD blocks)

Revision 08 1 01h or
02h

IVRS format revision number (see Table 85.)

Check 09 1 Checksum of entire structure must equal zero

OEM ID 10 6 Identifies platform OEM

OEM Table ID 16 8 Specified by OEM

OEM
Revision

24 4 Specified by OEM

Creator ID 28 4 Vendor ID of the utility that created the table

Creator
Revision

32 4 Revision of the utility that created the table

IVinfo 36 4 I/O virtualization information common to all IOMMU
units in a system. See Table 86.

Reserved 40 8 0 Reserved for future use; must be zero

(varies) 48+ I/O Virtualization Definition Blocks (IVDBs)

Notes:
1. IVHDs and IVMDs are subclasses of IVDBs.
2. Revision = 01h IVRS allows only type 10h and11h IVHDs.
3. Revision = 02h IVRS allows the inclusion of type 10h, 11h, and 40h IVHDs.

Table 85: IVRS Revision Field

Value IVRS Format Description

01h Fixed This format only supports pre-assigned DeviceIDs. Supports Type 10h and
11h IVHD blocks and all IVMD block types.

02h Mixed This format supports both pre-assigned DeviceIDs and ACPI HID device
naming. Supports all IVHD and IVMD block types.

03h–FFh — reserved.

Software Note: The IVRS Revision field is not related to the revision level of the IOMMU hardware
implementation.

[AMD Public Use]

I/O Virtualization ACPI Table 287

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Notes:
1. If DMA remap support flag is set, the platform must declare all ACPI device instances via F0h

format IVHD device entry type declaration and with a string type UID (see Table 108). Other
IVHD ACPI device entry type declarations are not permitted.
Other IVHD device entry type and range declarations (for example, referring to PCI devices
located in other PCI segments) are still permitted when this flag is set.

5.2.2 I/O Virtualization Definition Blocks

The following section describes the I/O Virtualization Hardware Definition (IVHD) block and “I/O
Virtualization Memory Definition (IVMD) Block” on page 302 describes the I/O Virtualization
Memory Definition (IVMD) block. IVMD blocks are optional. If a IVMD is included, it pertains to
the IVHD block that immediately precedes it.

5.2.2.1 I/O Virtualization Hardware Definition (IVHD) Block

Each IOMMU in the system is described by one IVHD block. The IVHD block is shown Table 87
below. An IOMMU and the peripherals it serves must be on the same PCI Segment defined in the
IVHD block. The IVHD block contains at least one IVHD device entry. Each entry describes one or a
range of I/O devices that the IOMMU virtualizes.

Table 86: IVRS IVinfo Field

Field name Bits Definition

Reserved 31:23 Must be zero.

HtAtsResv 22 ATS response address translation range reserved.
See Capability Offset 10h[HtAtsResv] definition.

VAsize 21:15 Virtual address size. If guest translation is supported, this field defines the
width of the Guest Physical Address.
See Capability Offset 10h[VAsize] definition.

PAsize 14:8 This field defines the width of the System Physical Address. See Capability
Offset 10h[PAsize] definition.

GVAsize 7:5 Guest virtual address width. See Capability Offset 10h[GVAsize] definition.

Reserved 4:2 Must be zero.

DMA remap
support

1 Presence of this flag indicates to the OS/HV that the IOMMU is used for Pre-
Boot DMA protection and device accessed memory should be remapped after
the OS has loaded.

EFRSup 0 Extended Feature Support. See Capability Offset 00h[EFRSup] definition.

[AMD Public Use]

288 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

The IOMMU DeviceID in the IVHD header identifies the IOMMU defined by the IVHD block. The
Capability Offset is required in case the function implements multiple IOMMU capabilities.

All peripherals that can generate transactions processed by an IOMMU must be defined in the IVHD.

There are two classes of IVHD blocks: 1) The fixed-length IVHD, which only allows the inclusion of
device entries that are identified using pre-assigned DeviceIDs, and 2) the variable-length IVHD,
which allows the inclusion of devices that are identified using ACPI HID device names.

Device entries are packed into the IVHD following the 24 or 40 byte header (shown in Table 87
above). If a mixed format IVRS includes both fixed length and variable length device entries, the
fixed length device entries must appear first in the data structure, followed by the variable length
device entries.

These two classes of IVHDs are described in the following sections.

Fixed-Length IVHD Blocks

The IVHD device entries, which follow the 24 or 40 byte header, describe the I/O topology (start and
end of a range, or single entries) of I/O devices and slots served by an IOMMU. All possible Device
IDs must be defined, whether the DeviceID is actually populated or not. Device entries are used to
report ranges when hot-plug and SR-IOV devices are possible. Each DeviceID is described by one
IVHD device entry which may be a select or select-alias record or is part of a range or an alias range.
If a given DeviceID exists but can generate neither DMA nor interrupts (ever), it need not be listed in
the IVHD block. A DeviceID used as an alias must be included in the device list (either “select” or
“range”). The simplest IVRS contains one DeviceID range for each IOMMU; a system with one
IOMMU may report as little as a single range covering all DeviceIDs (0000h–FFFFh).

Implementation Note: all DeviceID values served by an IOMMU must be reported in an IVHD block
including DeviceIDs not yet populated (including, but not limited to, virtual functions and empty hot-

Table 87: I/O Virtualization Hardware Definition (IVHD) Block Generic Format

Byte
offset

I/O Virtualization Hardware Definition (IVHD) block

0 Type Flags Length IOMMU DeviceID Capability Offset

8 IOMMU Base address

16 PCI Segment
Group

IOMMU info IOMMU feature information

Types
11h, 40h
only

24 IOMMU EFR Image

32 reserved

24 or 40 IVHD device entries ...

— Additional device entries as required.

Offset: 0 1 2 3 4 5 6 7

[AMD Public Use]

I/O Virtualization ACPI Table 289

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

plug slots).

There must be at least one IVHD device entry to describe at least one I/O device or slot governed by
the IOMMU; an IOMMU may govern multiple ranges and singletons of I/O devices. A IVHD device
entry can provide information about a single device, a sub-range of devices, or all the devices virtual-
ized by that IOMMU. When a IVHD device entry defines the start of a range, a second device entry,
immediately following the first, defines the end of the range. The range definition is inclusive of the
first and last device specified. IVHD device entries specify the settings for specific IOMMU DTE
fields for that device or range of devices in the IOMMU Device Table.

See “IVHD Device Entries” on page 297 for more information on device entries.

For peripherals that use source identification other than their own DeviceID, alias entries must be
used. An IOMMU and the peripherals it serves must be on the same PCI Segment Group defined in
the IVHD block. At this time, only PCI Segment Group 0 is supported. The IVHD length field speci-
fies the number of bytes in the IVHD block, starting from the Type field.

There are two types of fixed-length IVHDs defined: Type 10h and Type 11h. Table 88, Table 89,
Table 90, Table 91, Table 92, and Figure 89 define the Type 10h IVHD and Table 93, Table 94,
Table 95, and Table 96 define the Type 11h IVHD.

[AMD Public Use]

290 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Type 10h IVHD

Table 88: I/O Virtualization Hardware Definition (IVHD) Type 10h

IVRS
Byte off-
set

I/O Virtualization Hardware Definition (IVHD) block Relative
offset

48 Type
(10h)

Flags Length DeviceID Capability offset +0

56 IOMMU base address +8

64 PCI Segment
Group

IOMMU info IOMMU Feature Reporting +16

72+ IVHD device entries ... +24

Offset: 0 1 2 3 4 5 6 7 -

Table 89: IVHD Type 10h Field Definitions

Field Name Offset Size
(bytes)

Value Definition

Type 0 1 10h I/O virtualization hardware definition block type 10h

Flags 1 1 Settings for selected IOMMU control fields (see Table 90)

Length 2 2 Size of IVHD block in bytes, starting from Type field and
including IVHD device entries.

DeviceID 4 2 DeviceID of IOMMU

Capability
offset

6 2 Offset in Capability space for control fields of IOMMU

IOMMU base
address

8 8 Base address of IOMMU control registers in MMIO space

PCI Segment
Group

16 2 0000h PCI Segment Group number

IOMMU info 18 2 Interrupt numbers and UnitID (see Table 91)

IOMMU Fea-
ture Report-
ing

20 4 IOMMU Feature Reporting (see Table 92). If IVinfo[EFR-
Sup] = 0, this field is Reserved.

IVHD device
entries

24 n Fixed length (4 or 8 byte) IVHD device entries (see Section
[IVHD Device Entries])

[AMD Public Use]

I/O Virtualization ACPI Table 291

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Figure 89: IVHD Type 10h IOMMU Feature Reporting Field Format

Table 90: IVHD Flags Field

Flag Name Bit Definition

PPRSup 7 Defines peripheral page service support to system software
(see MMIO Offset 0030h[PPRSup]).

PreFSup 6 Defines PREFETCH_IOMMU_PAGES support to system software
(see MMIO Offset 0030h[PreFSup]).

Coherent 5 Recommended setting for Coherent control bit to system software
(see MMIO Offset 0018h[Coherent]). The recommended value is 1b.

IotlbSup 4 Defines remote IOTLB support to system software
(see Capability Offset 00h[IotlbSup]).

Isoc 3 Recommended setting for Isoc control bit to system software
(see MMIO Offset 0018h[Isoc]).

ResPassPW 2 Recommended setting for ResPassPW to system software
(see MMIO Offset 0018h[ResPassPW]).

PassPW 1 Recommended setting for PassPW to system software
(see MMIO Offset 0018h[PassPW]).

HtTunEn 0 Recommended setting for HtTunEn to system software
(see MMIO Offset 0018h[HtTunEn]).

Table 91: IVHD IOMMU Info Field

Field Name Bits Definition

Reserved 15:13 Reserved.

UnitID 12:8 Unit ID number (see Capability Offset 0Ch[UnitID])

Reserved 7:5 Reserved.

MSInum 4:0 MSI message number for event log (see Capability Offset 10h[MsiNum])

31 30 29 28 27 23 22 17 16 13 12 8 7 6 5 4 3 2 0

HATS GATS MsiNumPPR PNBanks PNCounters PASmax

H
E

S
up

G
A

S
up

IA
S

up

G
L

X
S

up

G
T

S
up

N
X

S
up

X
T

S
up

Table 92: IVHD IOMMU Feature Reporting Field

Field Name Bits Definition

HATS 31:30 Host address translation size (see MMIO Offset 0030h[HATS]).

GATS 29:28 Guest address translation size (see MMIO Offset 0030h[GATS]). This
value must be zero when MMIO Offset 0030h[GTSup]=0.

[AMD Public Use]

292 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Software Note: Using the information contained in a Type 10h IVHD an indication of support for the
performance counter feature can be derived from the IOMMU Feature Reporting Fields PNBanks
and PNCounters. When PNBanks and PNCounters both equal 0, then the performance counter fea-
ture is not supported. (see MMIO Offset 0030h[PCSup]). The Type 11h IVHD (see the next section)
supplies a direct indication of support for the performance counter feature by providing an image of
the IOMMU Extended Feature Register [MMIO Offset 0030h] hardware register.

MsiNumPPR 27:23 MsiNumPPR for peripheral page requests (see Capability Offset 10h[Msi-
NumPPR]); must be 0_0000b when MMIO Offset 0030h[PPRSup] = 0.

PNBanks 22:17 Number of performance counter banks (see MMIO Offset 4000h[NCoun-
terBanks]).

PNCounters 16:13 Number of performance counters per counter bank (see MMIO Offset
4000h[NCounter]).

PASmax 12:8 Parameter that indicates the maximum PASID value supported by the
IOMMU (see MMIO Offset 0030h[PASmax]). Must be ignored if MMIO
Offset 0030h[PPRSup] = 0.

HESup 7 Hardware Error Registers supported (see Section 2.5.16.2 [I/O Hardware
Event Reporting Registers]).

GASup 6 Guest virtual APIC supported (see MMIO Offset 0030h[GASup]).

IASup 5 INVALIDATE_IOMMU_ALL supported (see MMIO Offset
0030h[IASup]).

GLXSup 4:3 Number of guest CR3 tables supported (see MMIO Offset 0030h[GLX-
Sup]).

GTSup 2 Guest translation supported (see MMIO Offset 0030h[GTSup]).

NXSup 1 NX supported for I/O (see MMIO Offset 0030h[NXSup]).

XTSup 0 x2APIC supported for peripherals (see MMIO Offset 0030h[XTSup]).

Table 92: IVHD IOMMU Feature Reporting Field (Continued)

Field Name Bits Definition

[AMD Public Use]

I/O Virtualization ACPI Table 293

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Type 11h IVHD

If IVinfo[EFRSup] = 0, IVHD Type 11h is Reserved.

Table 93: I/O Virtualization Hardware Definition (IVHD) Type 11h

IVRS
Byte off-
set

I/O Virtualization Hardware Definition (IVHD) block Relative
offset

48 Type
(11h)

Flags Length DeviceID Capability offset +0

56 IOMMU base address +8

64 PCI Segment
Group

IOMMU info IOMMU Attributes +16

72 EFR Register Image +24

80 EFR Register Image 2 +32

88+ IVHD device entries +40

Offset: 0 1 2 3 4 5 6 7 -

Table 94: IVHD Type 11h Field Definitions

Field Name Offset Size
(bytes)

Value Definition

Type 0 1 11h I/O virtualization hardware definition block type 11h

Flags 1 1 Recommended settings for selected IOMMU control fields
See Table 95

Length 2 2 (bytes) Size of IVHD block in bytes, starting from Type field and
including IVHD device entries.

DeviceID 4 2 DeviceID of IOMMU

Capability
offset

6 2 Offset in Capability space for control fields of IOMMU

IOMMU base
address

8 8 Base address of IOMMU control registers in MMIO space

PCI Segment
Group

16 2 0000h PCI Segment Group number

IOMMU info 18 2 Interrupt numbers and UnitID (Table 91)

IOMMU
Attributes

20 4 IOMMU information not reported in the MMIO Offset 30h
Extended Feature Register (Table 96)

EFR Register
Image

24 8 Exact copy of the IOMMU Extended Feature Register
[MMIO Offset 0030h]

[AMD Public Use]

294 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

EFR Register
Image 2

32 8 Exact copy of the IOMMU Extended Feature 2 Register
[MMIO Offset 01A0h]

IVHD device
entries

40 n Fixed length (4 or 8 byte) IVHD device entries. See Sec-
tion [IVHD Device Entries]

Table 95: IVHD Flags Field

Flag Name Bit Definition

— 7 Reserved

— 6 Reserved

Coherent 5 Recommended setting for Coherent control bit to system software
(see MMIO Offset 0018h[Coherent]). The recommended value is 1b.

IotlbSup 4 Defines remote IOTLB support to system software
(see Capability Offset 00h[IotlbSup]).

Isoc 3 Recommended setting for Isoc control bit to system software
(see MMIO Offset 0018h[Isoc]).

ResPassPW 2 Recommended setting for ResPassPW to system software
(see MMIO Offset 0018h[ResPassPW]).

PassPW 1 Recommended setting for PassPW to system software
(see MMIO Offset 0018h[PassPW]).

HtTunEn 0 Recommended setting for HtTunEn to system software
(see MMIO Offset 0018h[HtTunEn]).

Table 96: IVHD Type 11h IOMMU Attributes

Field Name Bits Definition

— 31:28 Reserved.

MsiNumPPR 27:23 MsiNumPPR for peripheral page requests (see Capability Offset 10h[Msi-
NumPPR])

PNBanks 22:17 Number of performance counter banks (see MMIO Offset 4000h[NCoun-
terBanks]).

PNCounters 16:13 Number of performance counters per counter bank (see MMIO Offset
4000h[NCounter]).

— 12:1 Reserved.

Table 94: IVHD Type 11h Field Definitions (Continued)

Field Name Offset Size
(bytes)

Value Definition

[AMD Public Use]

I/O Virtualization ACPI Table 295

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Mixed Format IVHD Block

Mixed format IVHD blocks can contain fixed-length assigned DeviceID device entries and variable
length ACPI HID named device entries. The mixed format IVHD block is identified as Type = 40h. If
IVinfo[EFRSup] = 0, IVHD Type 40h is Reserved.

HATDis 0 Host Address Translation Disable
1 = Host Address Translation is not supported. Value in MMIO Offset
0030h[HATS] is not meaningful. A non-zero host page table root pointer
in the DTE would result in an ILLEGAL_DEV_TABLE_ENTRY event.
See Section 2.5.2, “ILLEGAL_DEV_TABLE_ENTRY Event” on
page 150.
0 = Host Address Translation is supported. See MMIO Offset
0030h[HATS].
Note: For hardware implementations of the IOMMU, this bit must be 0b.

Table 97: I/O Virtualization Hardware Definition (IVHD) Type 40h Fields

IVRS
Byte off-
set

I/O Virtualization Hardware Definition (IVHD) block. Relative
offset

48 Type
(40h)

Flags Length DeviceID Capability offset +0

56 IOMMU base address +8

64 PCI Segment
Group

IOMMU info IOMMU Attributes +16

72 EFR Register Image +24

80 EFR Register Image 2 +32

88 IVHD device entries ... +40

Offset: 0 1 2 3 4 5 6 7 -

Table 98: IVHD Type 40h Field Definitions

Field Name Offset Size
(bytes)

Value Definition

Type 0 1 40h I/O virtualization hardware definition block type 40h

Flags 1 1 Recommended settings for selected IOMMU control fields
See Table 95

Table 96: IVHD Type 11h IOMMU Attributes (Continued)

Field Name Bits Definition

[AMD Public Use]

296 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Length 2 2 (bytes) Size of IVHD block in bytes, starting from Type field and
including IVHD device entries.

DeviceID 4 2 DeviceID of IOMMU

Capability
offset

6 2 Offset in Capability space for control fields of IOMMU

IOMMU base
address

8 8 Base address of IOMMU control registers in MMIO space

PCI Segment
Group

16 2 0000h PCI Segment Group number

IOMMU info 18 2 Interrupt numbers and UnitID (Table 91)

IOMMU
Attributes

20 4 IOMMU information not reported in the MMIO Offset 30h
Extended Feature Register (Table 96)

EFR Register
Image

24 8 Exact copy of the IOMMU Extended Feature Register
[MMIO Offset 0030h]

EFR Register
Image 2

32 8 Exact copy of the IOMMU Extended Feature 2 Register
[MMIO Offset 01A0h]

IVHD device
entries

40 n IVHD device entries. All device entry types are allowed.
(See Section [IVHD Device Entries]

Table 99: IVHD Type 40 Flags Field

Flag Name Bit Definition

— 7 reserved

— 6 reserved

Coherent 5 Recommended setting for Coherent control bit to system software
(see MMIO Offset 0018h[Coherent]). The recommended value is 1b.

IotlbSup 4 Defines remote IOTLB support to system software
(see Capability Offset 00h[IotlbSup]).

Isoc 3 Recommended setting for Isoc control bit to system software
(see MMIO Offset 0018h[Isoc]).

ResPassPW 2 Recommended setting for ResPassPW to system software
(see MMIO Offset 0018h[ResPassPW]).

PassPW 1 Recommended setting for PassPW to system software
(see MMIO Offset 0018h[PassPW]).

Table 98: IVHD Type 40h Field Definitions(Continued)

Field Name Offset Size
(bytes)

Value Definition

[AMD Public Use]

I/O Virtualization ACPI Table 297

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

IVHD Device Entries

The device entry types 00h–7Fh are used for fixed length device entries and device entry types 80h–
FFh are reserved for variable length device entries. See Table 101.

Fixed-length IVHD device entries can be used to describe one or more PCI bus-device-function
(BDF) or HyperTransport™ bus-unit addresses. When IVHD entries describe a range of addresses,
the DeviceID address is treated as if it were 16-bit integer so that, for example, DeviceID 0100h (Bus

HtTunEn 0 Recommended setting for HtTunEn to system software
(see MMIO Offset 0018h[HtTunEn]).

Table 100: IVHD Type 40h IOMMU Attributes

Field Name Bits Definition

— 31:28 Reserved.

MsiNumPPR 27:23 MsiNumPPR for peripheral page requests (see Capability Offset 10h[Msi-
NumPPR])

PNBanks 22:17 Number of performance counter banks (see MMIO Offset 4000h[NCoun-
terBanks]).

PNCounters 16:13 Number of performance counters per counter bank (see MMIO Offset
4000h[NCounter]).

— 12:0 Reserved.

HATDis 0 Host Address Translation Disable
1 = Host Address Translation is not supported. Value in MMIO Offset
0030h[HATS] is not meaningful. A non-zero host page table root pointer
in the DTE would result in an ILLEGAL_DEV_TABLE_ENTRY event.
See Section 2.5.2, “ILLEGAL_DEV_TABLE_ENTRY Event” on
page 150.
0 = Host Address Translation is supported (See MMIO Offset
0030h[HATS]).
Note: For hardware implementations of the IOMMU, this bit must be 0b.

Table 101: IVHD Device Entry Length Based on Type

IVHD device entry type
range (decimal)

IVHD device entry type
range (hexadecimal)

Uppermost 2-bits IVHD device entry
length (bytes)

0–63 00h–3Fh 00b 4 bytes

64–127 40h–7Fh 01b 8 bytes

128–255 80h–FFh 1xb variable length

Table 99: IVHD Type 40 Flags Field

Flag Name Bit Definition

[AMD Public Use]

298 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

1, Device 0, Function 0) follows DeviceID 00FFh (Bus 0, Device 31, Function 7), and DeviceID
0518h (Bus 5, Device 3, Function 0) follows DeviceID 0517h (Bus 5, Device 2, Function 7).

Assigned DeviceID Device Entries

Device entries for devices with assigned device IDs are fixed in length. Two formats are defined: 4-
byte and 8-byte.

IVHD 4-byte device entries
The 4-byte IVHD device entry is structured to contain a single DeviceID with related DTE settings. A
4-byte IVHD device entry must be aligned to a 4-byte boundary.

Table 102: IVHD Device Entry Fields (4-byte)

Byte offset: +0 +1 +2 +3

Byte contents: Device entry
type

DevID DTE setting

Table 103: IVHD Device Entry Type Codes (4-byte)

Byte 0:
IVHD device entry
type
(4-byte)

Bytes 1 & 2:
DeviceID

Byte 3:
DTE Setting

Entry Definition

0 0000h 00h reserved.

1 (ignored) DTE setting All. DTE setting applies to all DeviceIDs con-
trolled by the IOMMU.

2 DevID DTE setting Select. DTE setting applies to the device
specifed in DevID field.

3 DevID DTE setting Start of range. DTE setting applies to all
devices from start of range specified by the
DevID field of this entry to the DeviceID
specified by the DevID field of the subsequent
type 4 device entry. The range is inclusive.

4 DevID 00h End of range. The DTE setting from the previ-
ous type 3 device entry applies to all devices
including the DeviceID specified by the
DevID field of this entry.

5–63 (05h–3Fh) — — Reserved.

Table 104: IVHD Device Table Entry DTE Setting

Bits Field Definition

7 Lint1Pass Identifies a device able to assert LINT1 interrupts

6 Lint0Pass Identifies a device able to assert LINT0 interrupts

[AMD Public Use]

I/O Virtualization ACPI Table 299

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

The fields contained in Table 104 are defined in Table 7 on page 66. Extended DTE settings are
defined in Table 106.

IVHD 8-byte device entries
The 8-byte IVHD device entry is used to convey more information than is possible with a 4-byte
device entry. Table 105 lists the defined 8-byte device entries.

5:4 SysMgt[1:0] Identifies a device able to assert System Management messages (for
example, VID/FID)

3 ATCPermit Indicates to system software that Device Address Translation Caching
(ATC) is available on the device and use of Address Translation Ser-
vices (ATS) are permitted for the device, typically for in-SOC devices

2 NMIPass Identifies a device able to assert NMI interrupts

1 EIntPass Identifies a device able to assert ExtInt interrupts

0 INITPass Identifies a device able to assert INIT interrupts

Table 105: IVHD Device Entry Type Codes (8-byte)

Byte 0:
Device
entry type

Bytes 1 & 2 Byte 3
(Table 104
)

Byte 4 Bytes 5 & 6 Byte 7 Entry Definition

64–65
(40h-41h)

0000h 00h 00h 0000h 00h Reserved.

66 (42h) DevIDa:
Actual
peripheral
DeviceID

DTE Set-
ting

00h DevIDb:
DeviceID
used as
source by
peripheral

00h Alias select. DTE setting
applies to device specified by
DevIDa; device uses DevIDb
as source identification infor-
mation.

67 (43h) DevIDa:
Actual
peripheral
DeviceID

DTE Set-
ting

00h DevIDb:
DeviceID
used as
source by
peripheral

00h Alias start of range. DTE set-
ting applies to all peripherals
from start of range; all periph-
erals in range use DevIDb as
source identification informa-
tion. Range is terminated with
a type 4 device entry (end of
range). The range is inclusive.

68–69
(44h–45h)

0000h 00h 00h 0000h 00h Reserved

Table 104: IVHD Device Table Entry DTE Setting (Continued)

Bits Field Definition

[AMD Public Use]

300 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Special devices (specified by device entry type 72) are not normally identified through enumeration.

An Alias device type entry is used for each peripheral that does not use its own DeviceID information
in bus transactions. For example, peripherals downstream of a bridge device that use the DeviceID of
the bridge must have a corresponding Alias Select or Alias Start of Range entry to inform system
software which IOMMU Device Table entry will be used for translation information.

When an Alias device type entry is used, the IVHD block cannot contain a device type entry of type 1
(ALL), 2 (Select), or 3 (Start of Range) that includes the same peripherals. When the (type 67, type 4)
IVHD type pair is used to define a range, all the included peripherals use the same DeviceID (b) as a
DeviceID and thus the same IOMMU Device Table entry. An extended entry of type 70 or type 71 is
used when the extended attributes in Table 106 must be expressed.

70 (46h) DevID DTE set-
ting

Extended DTE setting (see
Table 106)

Extended select. DTE setting
and extended DTE setting
apply to device specified by
DevID

71 (47h) DevID DTE set-
ting

Extended DTE setting (see
Table 106)

Extended start of range. DTE
setting and extended DTE set-
ting apply to all devices start-
ing from the device specified
by the DevID field. Range is
terminated with an IVHD entry
type 4 (end of range); The
range is inclusive.

72 (48h) 0000h DTE set-
ting

Handle DevIDb:
DeviceID
used as
source by
peripheral

Variety
Table 107

Special Device. Handle con-
tains the I/O APIC ID or the
HPET Number. Variety
encodes IOAPIC or HPET.

73-127
(49h–7Fh)

— — — Reserved

Table 106: IVHD Device Entry Extended DTE Setting Field

Bit Field Definition

31 AtsDisabled Device must be prevented from issuing address translation
requests. 1b = block ATS requests; 0b = allow ATS.

30:0 — Reserved; must be zero.

Table 105: IVHD Device Entry Type Codes (8-byte)(Continued)

Byte 0:
Device
entry type

Bytes 1 & 2 Byte 3
(Table 104
)

Byte 4 Bytes 5 & 6 Byte 7 Entry Definition

[AMD Public Use]

I/O Virtualization ACPI Table 301

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

A peripheral not identified in the normal enumeration process requires a Special Device table entry of
type 72. The variety of the peripheral and the associated tag are provided as show in Table 107.

ACPI Hardware ID Device Entries

The Advanced Configuration and Power Interface Specification (ACPI) (see “Related Documents”
on page 30) defines a means by which the platform firmware can identify installed I/O devices to the
operating system. The operating system uses this information to discover and bind a device driver to
the hardware device.

The ACPI specification defines the format of both the Hardware ID (HID) and the Compatible ID
(CID). Firmware uses this information to build ACPI HID named device entries in the IVHD.
Table 108 defines the format of the device entry for ACPI HID named devices. ACPI device declara-
tions in IVHD should not alias device resources that are already enumerated to software by other
means (for example, through the PCI configuration space and no aliasing).

Table 107: IVHD Special Device Entry Variety Field

Variety value Special
device

Handle definition

00h — Reserved.

01h IOAPIC The I/O APIC ID from the APCI MADT.

02h HPET The HPET Number from the HPET table.

03h–FFh — Reserved.

Table 108: Device Entry Type F0h Fields

Field Name Offset Size
(bytes)

Value Definition

Type 0 1 F0h (240d) Identifies entry as a variable-length ACPI
HID device entry.

DeviceID 1 2 DeviceID used as source by peripheral.

DTE Settings 3 1 See Table 104.

Hardware ID (HID) 4 8 ACPI Hardware ID

Compatible ID (CID) 12 8 ACPI Compatible ID

Unique ID Format 20 1 0 = UID not present
1 = UID is an integer
2 = UID is a character string

[AMD Public Use]

302 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

Notes:
1. For the operating system to properly identify a device that is not bus-enumerable, a HID is

required while a CID is optional. If both are provided, the operating system attempts to bind the
device to a driver using the HID. If no driver for the specific device is discovered, the operating
system may attempt to bind the device to a generic driver using the CID, if available.

2. The HID can be a 32-bit integer or a character string. If an integer, the lower 4 bytes of the field
contain the integer and the upper 4 bytes are padded with 0. If the HID is a string, it must be a
valid 8-byte ACPI ID or a valid 7-byte PNP ID with the upper byte padded with 0.

3. The CID is an optional field. If present, CID must be a single Compatible Device ID following the
same format as the HID field. If the CID is not provided, this field should be set to zero.

4. The UID is required if there are multiple instances of the device in the ACPI namespace. If the
UID field is not present, the length of the ACPI HID device entry is 22 bytes.

5. If defined as a character string, the ACPI UID marks the instances of DMA-capable devices with
the defined DeviceID (e.g. IOMMU visible Routing ID). It should match the ACPI device name-
space strings with unit number, but without a trailing \0 character (as the UID length specifies the
size of the string already).
For example, “_SB.FUR0” or “_SB.FUR1” represent string definitions for separate ACPI
device instances visible to software, but that use the same device hardware and therefore the same
DeviceID visible to IOMMU; these two instances would require two F0h entries, each using the
same DeviceID in offset 1.

5.2.2.2 I/O Virtualization Memory Definition (IVMD) Block

Platform firmware may have memory usage requirements to communicate to system software based
on its needs or on hardware characteristics. Platform firmware can inform system software of mem-
ory usage restrictions or requirements by using I/O Virtualization Memory Definition (IVMD)
blocks.

Assigned DeviceID IVMD Block

For the assigned DeviceID IVMD, each IVMD may be per-device, specifying the DeviceID to which
the block applies, or the IVMD entry may apply to all devices and the DeviceID is ignored. IVMD
blocks may reference the DeviceIDs supplied in IVHD entries for alias ranges, special devices, and
ACPI HID named devices. System software is expected to use the information in the IVMD blocks
when it programs the IOMMU.

Unique ID Length 21 1 Length of following field ("UID", offset 22)
in bytes.
0 = UID not present

Unique ID (UID) 22 vari-
able

ACPI UID (See Note 5.)

Table 108: Device Entry Type F0h Fields(Continued)

Field Name Offset Size
(bytes)

Value Definition

[AMD Public Use]

I/O Virtualization ACPI Table 303

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

The IVMD block fields are defined in Table 110. Note that a memory definition block may apply to a
particular peripheral device, multiple peripheral devices, or all peripheral devices. When a memory
block is defined for multiple peripheral devices, but not all, the IVMD definition is repeated for each
discontiguous peripheral device or range to which the memory definition applies. If IR = 0b and IW =
0b in the IVMD flags field, then the memory range is not to be mapped into the peripheral device
address space and the unity flag field must be 0b. To prevent a memory range from ever being
mapped into any peripheral device address space, use IR = 0b and IW = 0b in the IVMD flags field
and IVMD type = 20h (all devices).

Table 109: IVMD Types 20h–22h Format

Byte off-
set

I/O Virtualization Memory Definition (IVMD) block Relative
offset

0 Type Flags Length DeviceID Auxiliary data +0

8-9 PCI segment ID +8

10-15 Reserved (0000_0000_0000_0000h) +10

16 IVMD start address +16

24 IVMD memory block length +24

Offset: 0 1 2 3 4 5 6 7 -

Table 110: IVMD Types 20h–22h Fields

Field Name Offset Size
(bytes)

Value Definition

Type 0 1 20h=all peripherals;
21h=specified
peripheral;
22h=peripheral range

I/O virtualization memory definition
block

Flags 1 1 (see Table 111) Flags for memory block

Length 2 2 32 Length of IVMD block in bytes

DeviceID 4 2 Type 20h: field reserved;
Type 21h: DeviceID;
Type 22h: starting DeviceID of range

Auxiliary data 6 2 Types 20h, 21h: field reserved;
Type 22h: ending DeviceID of range
(inclusive)

Reserved 8 8 0 Reserved

PCI Segment Group 8 2 Type 20h: field reserved;
Type 21h, 22h: PCI Segment Group
number for corresponding DeviceID

[AMD Public Use]

304 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

The IVMD flag field applies to individual devices when IVMD type = 21h, to all devices in a system
when IVMD type = 20h, and to all devices in the DeviceID range when IVMD type = 22h.

5.3 I/O Virtualization Device Tree
The I/O Virtualization Device Tree (IVDT) is an alternative to the IVRS data structure described
above. I/O device information should be supplied by platform firmware in the device tree format
whenever ACPI-compatibility is not a requirement or not desirable (for instance, on an x86 platform
built for Linux).

5.3.1 I/O Virtualization Device Tree Data Structure

The following psuedo code structure defines the I/O Virtualization Device Tree (IVDT):

I/O Virtualization Device Tree Data Structure
/* NOTE:
 * - substitute # with value
 * - substitute X with [0 to (n-1)]
 */
/* This entry is per IOMMU */
iommuX : iommu@0x###### {

compatible = "amd,iommu-v2","amd,iommu-v3";
ivrs,revision = <0x2>;

Start address 16 8 System Physical Address of start of
memory block

Memory block length 24 8 Length in bytes Length of memory block; system
software may round up to 4-Kbyte
boundary

Table 111: IVMD Flags Definitions

Flags Field Name Bits Definition

— 7:4 Reserved; must be zero.

ExclusionRange 3 Exclusion range. 1b = included in exclusion range, 0b=not in exclu-
sion range.
Note: IR, IW, and Unity are ignored when ExclusionRange = 1b.

IW 2 Write permission. 1b=writeable, 0b=not writeable.

IR 1 Read permission. 1b=readable, 0b=not readable.

Unity 0 Unit address mapping. 1b=virtual addresses must be the same value
as physical addresses. 0b=any virtual address translation may be
used.

Table 110: IVMD Types 20h–22h Fields (Continued)

Field Name Offset Size
(bytes)

Value Definition

[AMD Public Use]

I/O Virtualization ACPI Table 305

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

ivrs,ivinfo = <#>;

ivhd {
compatible = "amd,ivrs-ivhd";
type = <#>;
flags = <#>;
device_entries = <#>;
iommu_dev_id = <#>;
capabilities_offset = <#>;
iommu_base_address = <# #>;
pci_segment_group = <#>;
iommu_info = <#>;
iommu_attributes = <#>;
iommu_ext_features = <# #>;

device_entryX {
compatible = "amd,ivrs-device-entry";
/* entry can be 4, 8 or 22+ bytes */
entry = [# # # # ...];
};

/* .. next "device_entry" node (if any) */
};
/* Optional */
ivmdX {

compatible = "amd,ivrs-ivmd";
type = <#>;
flags = <#>;
devid_start = <#>;
devid_end = <#>;
start_address = <# #>;
block_length = <# #>;

};
/* .. next "ivmd" node (if any) */

};
/* .. next "iommu" node (if any) */

[AMD Public Use]

306 I/O Virtualization ACPI Table

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

[AMD Public Use]

307

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

Index to Registers

Capability Offset 00h IOMMU Capability Header .200
Capability Offset 04h IOMMU Base Address Low Register .201
Capability Offset 08h IOMMU Base Address High Register .202
Capability Offset 0Ch IOMMU Range Register .202
Capability Offset 10h IOMMU Miscellaneous Information Register 0203
Capability Offset 14h IOMMU Miscellaneous Information Register 1205
Vendor Specific Capability Offset 00hIOMMU

Vendor Specific Capability Header .205
Vendor Specific Capability Offset 04h IOMMU

Vendor Specific Capability Info .206
Vendor Specific Capability Offset 08h

IOMMU Virtual Function Base Address Low Register 206
Vendor Specific Capability Offset 0Ch

IOMMU Virtual Function Base Address High Register206
Vendor Specific Capability Offset 10h

IOMMU Virtual Function Control Base Address Low Register .207
Vendor Specific Capability Offset 14h

IOMMU Virtual Function Control Base Address High Register 207
MMIO Offset 0000h Device Table Base Address Register. .208
MMIO Offset 0008h Command Buffer Base Address Register 209
MMIO Offset 0010h Event Log Base Address Register .210
MMIO Offset 0018h IOMMU Control Register .211
MMIO Offset 0020h IOMMU Exclusion Base Register / Completion Store

Base Register .217
MMIO Offset 0028h IOMMU Exclusion Range Limit Register / Completion Store

Limit Register .218
MMIO Offset 0030h IOMMU Extended Feature Register .219
MMIO Offset 0038h PPR Log Base Address Register .223
MMIO Offset 0040h IOMMU Hardware Event Upper Register.224
MMIO Offset 0048h IOMMU Hardware Event Lower Register 224
MMIO Offset 0050h IOMMU Hardware Event Status Register225
MMIO Offset 00[60-D8]h IOMMU SMI Filter Register .225
MMIO Offset 00E0h Guest Virtual APIC Log Base Address Register226
MMIO Offset 00E8h Guest Virtual APIC Log Tail Address Register 227
MMIO Offset 00F0h PPR Log B Base Address Register .229
MMIO Offset 00F8h Event Log B Base Address Register .230
MMIO Offset 01[00–30]h Device Table Segment n Base Address Register.231
MMIO Offset 0138h Device-Specific Feature Extension (DSFX) Register232
MMIO Offset 0140h Device-Specific Control Extension (DSCX) Register.233
MMIO Offset 0148h Device-Specific Status Extension (DSSX) Register233
MMIO Offset 0150h MSI Vector Register 0 .234
MMIO Offset 0154h MSI Vector Register 1 .234

[AMD Public Use]

308

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

MMIO Offset 0158h MSI Capability Header Register .234
MMIO Offset 015Ch MSI Address Low Register .235
MMIO Offset 0160h MSI Address High Register .235
MMIO Offset 0164h MSI Data Register .236
MMIO Offset 0168h MSI Mapping Capability Header Register 236
MMIO Offset 016Ch IOMMU Performance Optimization Control Register 237
MMIO Offset 0x170h XT IOMMU General Interrupt Control Register238
MMIO Offset 0x178h XT IOMMU PPR Interrupt Control Register.239
MMIO Offset 0x180h XT IOMMU GA Log Interrupt Control Register 240
MMIO Offset 0x190h vIOMMU Status Register .241
MMIO Offset 02[00,18,30,48]h MARC Aperture [0–3] Base Register .242
MMIO Offset 02[08,20,38,50]h MARC Aperture [0–3] Relocation Register 243
MMIO Offset 02[10,28,40,58]h MARC Aperture [0–3] Length Register 243
MMIO Offset 01A0h IOMMU Extended Feature 2 Register. .244
MMIO Offset 1FF8h IOMMU Reserved Register .245
MMIO Offset 2000h Command Buffer Head Pointer Register245
MMIO Offset 2008h Command Buffer Tail Pointer Register .246
MMIO Offset 2010h Event Log Head Pointer Register .246
MMIO Offset 2018h Event Log Tail Pointer Register .248
MMIO Offset 2020h IOMMU Status Register .248
MMIO Offset 2030h IOMMU PPR Log Head Pointer Register251
MMIO Offset 2038h IOMMU PPR Log Tail Pointer Register251
MMIO Offset 2040h Guest Virtual APIC Log Head Pointer Register 252
MMIO Offset 2048h Guest Virtual APIC Log Tail Pointer Register 252
MMIO Offset 2050h PPR Log B Head Pointer Register .253
MMIO Offset 2058h PPR Log B Tail Pointer Register .253
MMIO Offset 2070h Event Log B Head Pointer Register. .254
MMIO Offset 2078h Event Log B Tail Pointer Register. .254
MMIO Offset 2080h PPR Log Auto Response Register .255
MMIO Offset 2088h PPR Log Overflow Early Indicator Register256
MMIO Offset 2090h PPR Log B Overflow Early Indicator Register256
MMIO Offset 4000h IOMMU Counter Configuration Register257
MMIO Offset 4008h IOMMU Counter PASID Bank-Lock Register258
MMIO Offset 4010h IOMMU Counter Domain Bank-Lock Register 259
MMIO Offset 4018h IOMMU Counter DeviceID Bank-Lock Register259
MMIO Offset [40-7F][0-F]00h IOMMU Counter Register .261
MMIO Offset [40-7F][0-F]08h IOMMU Counter Source Register .262
MMIO Offset [40-7F][0-F]10h IOMMU PASID Match Register .264
MMIO Offset [40-7F][0-F]18h IOMMU Domain Match Register .265
MMIO Offset [40-7F][0-F]20h IOMMU DeviceID Match Register .266
MMIO Offset [40-7F][0-F]28h IOMMU Counter Report Register .267
VFCntlMMIO Offset {16’b[GuestID], 6’b00_0000}

Guest Device Map Control Register .268

[AMD Public Use]

309

AMD I/O Virtualization Technology (IOMMU) Specification48882-PUB—Rev 3.10—Feb 2025

VFCntlMMIO Offset {16’b[GuestID], 6’b00_1000}
Guest Domain Map Control Register .268

VFCntlMMIO Offset {16’b[GuestID], 6’b01_0000}
Guest Miscellaneous Control Register .269

VFCntlMMIO Offset {16’b[GuestID], 6’b01_1000}
Guest Event LogB Buffer Control Register.270

VFCntlMMIO Offset {16’b[GuestID], 6’b10_0000}
Guest Command Control Register .270

VFCntlMMIO Offset {16’b[GuestID], 6’b10_1000}
Guest Event Control Register .271

VFCntlMMIO Offset {16’b[GuestID], 6’b11_0000}
Guest PPR Control Register .272

VFCntlMMIO Offset {16’b[GuestID], 6’b11_1000}
Guest PPRB Control Register .273

VFMMIO Offset {16’b[GuestID], 12’h0000h}
Command Buffer Head Pointer Register for GuestID.273

VFMMIO Offset {16’b[GuestID], 12’h0008h}
Command Buffer Tail Pointer Register for GuestID.273

VFMMIO Offset {16’b[GuestID], 12’h0010h}
Event Log Head Pointer Register for GuestID.273

VFMMIO Offset {16’b[GuestID], 12’h0018h}
Event Log Tail Pointer Register for GuestID.273

VFMMIO Offset {16’b[GuestID], 12’h0020h}
vIOMMU Status Register for GuestID. .274

VFMMIO Offset {16’b[GuestID], 12’h0030h}
IOMMU PPR Log Head Pointer Register for GuestID. 274

VFMMIO Offset {16’b[GuestID], 12’h0038h}
IOMMU PPR Log Tail Pointer Register for GuestID. 274

VFMMIO Offset {16’b[GuestID], 12’h0040h}
Reserved. .274

VFMMIO Offset {16’b[GuestID], 12’h0048h}
Reserved. .274

VFMMIO Offset {16’b[GuestID], 12’h0050h}
PPR Log B Head Pointer Register for GuestID.274

VFMMIO Offset {16’b[GuestID], 12’h0058h}
PPR Log B Tail Pointer Register for GuestID.274

VFMMIO Offset {16’b[GuestID], 12’h0070h}
Event Log B Head Pointer Register for GuestID.274

VFMMIO Offset {16’b[GuestID], 12’h0078h}
Event Log B Tail Pointer Register for GuestID.274

VFMMIO Offset {16’b[GuestID], 12’h0080h}
PPR Log Auto Response Register for GuestID. 274

VFMMIO Offset {16’b[GuestID], 12’h0088h}
PPR Log Overflow Early Indicator Register for GuestID. 274

[AMD Public Use]

310

48882-PUB—Rev 3.10—Feb 2025AMD I/O Virtualization Technology (IOMMU) Specification

VFMMIO Offset {16’b[GuestID], 12’h0090h}
PPR Log B Overflow Early Indicator Register for GuestID. . . .275

[AMD Public Use]

	AMD I/O Virtualization Technology (IOMMU) Specification
	Contents
	Figures
	Tables
	Revision History

	Preface
	About this Document
	Intended Audience
	Organization
	Conventions and Definitions
	Bit Attributes
	Related Documents

	1 IOMMU Overview
	1.1 Summary of IOMMU Capabilities
	1.2 Usage Models
	1.2.1 Replacing the GART
	1.2.2 Replacing the Device Exclusion Vector Mechanism
	1.2.3 32-bit to 64-bit Legacy I/O Device Mapping
	1.2.4 User Mode Device Accesses
	1.2.5 Virtual Machine Guest Access to Devices
	1.2.6 Virtualizing the IOMMU
	1.2.7 Virtualized User Mode Device Accesses

	1.3 IOMMU Optional Features
	1.3.1 Two-level Translation for Guest and Host Address Spaces
	1.3.2 Enhanced Processor Page Table Compatibility
	1.3.3 Performance Features
	1.3.3.1 Performance Counters
	1.3.3.2 Loading the IOMMU TLB
	1.3.3.3 Flushing the IOMMU TLB

	1.3.4 Address Translation Services for Guest Virtual Addresses
	1.3.5 Peripheral Page Request Support Compatible with PCI-SIG PRI
	1.3.6 Selecting Translation Tables in a Memory Transaction
	1.3.7 AMD64 Interrupt Virtualization (Guest Virtual APIC Interrupt Controller)
	1.3.8 Enhanced Support for Access and Dirty Bits
	1.3.9 Guest I/O Protection
	1.3.10 SMI Filter
	1.3.11 Hardware Error Registers
	1.3.12 Hardware Accelerated Virtualized IOMMU (vIOMMU)
	1.3.13 Secure Nested Paging (SEV-SNP)

	2 Architecture
	2.1 Behavior
	2.1.1 Normal Operation
	2.1.2 IOMMU Logical Topology
	2.1.3 IOMMU Event Reporting
	2.1.3.1 IOMMU Event Responses
	2.1.3.2 I/O Page Faults
	2.1.3.3 Memory Access Errors

	2.1.4 Special Conditions
	2.1.4.1 Zero-byte Read Operations
	2.1.4.2 Interrupt Address Range
	2.1.4.3 Multi-page Address Translation Requests Lacking a PDE
	2.1.4.4 Address Translation Requests in the IOMMU Exclusion Range
	2.1.4.5 Address Translation Requests in the Special Address Range
	2.1.4.6 Page Translation Entries Spanning Memory and Special Address Ranges
	2.1.4.7 Discarding IOMMU TLB Information to Re-walk Page Tables
	2.1.4.8 Discarding Device IOTLB Information to Rewalk Page Tables
	2.1.4.9 Updating the Accessed and Dirty Bits in Guest Page Tables
	2.1.4.10 Address Translation Response When DTE[Mode] = 0
	2.1.4.11 Page Splintering
	2.1.4.12 Atomic Operations Require Read and Write Permissions
	2.1.4.13 INVALIDATE_IOTLB_PAGES and Peripheral Reset

	2.1.5 System Management Interrupt (SMI) Controls
	2.1.5.1 SMI Filter Operation
	2.1.5.2 SMI Filter Address Format
	2.1.5.3 Recommended Programming of the SMI Filter
	2.1.5.4 General Programming of the SMI Filter Registers

	2.2 Data Structures
	2.2.1 Updating Shared Tables
	2.2.2 Device Table
	2.2.2.1 Device Table Entry Format
	2.2.2.2 Making Device Table Entry Changes
	2.2.2.3 Device Table Segmentation

	2.2.3 I/O Page Tables for Host Translations
	2.2.3.1 Host Access Support
	2.2.3.2 Host Dirty Support

	2.2.4 Sharing AMD64 Processor and IOMMU Page Tables—GPA-to-SPA
	2.2.5 Interrupt Remapping Tables
	2.2.5.1 Interrupt Remapping Tables, Guest Virtual APIC Not Enabled
	2.2.5.2 Interrupt Virtualization Tables with Guest Virtual APIC Enabled
	2.2.5.3 IOMMU x2APIC Support
	2.2.5.4 Guest APIC Physical Processor Interrupt

	2.2.6 I/O Page Tables for Guest Translations
	2.2.6.1 Support for AMD64 Guest Page Table NX field
	2.2.6.2 AMD64 Guest Page Table Access Protection
	2.2.6.3 Guest CR3 Table
	2.2.6.4 Support for AMD64 Level 5 (PML5E) Page Table
	2.2.6.5 AMD64 4-Kbyte Page Translation
	2.2.6.6 AMD64 2-Mbyte Page Translation
	2.2.6.7 AMD64 1-Gbyte Page Translation
	2.2.6.8 Nested Page Table Walks

	2.2.7 Guest and Nested Address Translation
	2.2.7.1 Combining Guest and Host Address Translation
	2.2.7.2 Calculating Page Table and Page Access Attributes
	2.2.7.3 Recalculating Read and Write Access Permissions
	2.2.7.4 Updating Accessed and Dirty Bits in the Guest Address Tables
	2.2.7.5 Clearing Accessed and Dirty Bits
	2.2.7.6 Calculating PCIe® Read and Write Attributes for an ATS Response
	2.2.7.7 PCIe® TLP PASID Prefix
	2.2.7.8 Maximum PASID value (PASmax)
	2.2.7.9 Calculating Non-Snoop Accesses Attribute for an ATS Response
	2.2.7.10 Extended Coherency Attributes

	2.2.8 Guest Virtual APIC Table for Interrupt Virtualization
	2.2.9 Guest I/O Protection

	2.3 Starting the IOMMU
	2.3.1 Data Structure Initialization
	2.3.2 Making Guest Interrupt Virtualization Changes

	2.4 Commands
	2.4.1 COMPLETION_WAIT
	2.4.2 INVALIDATE_DEVTAB_ENTRY
	2.4.3 INVALIDATE_IOMMU_PAGES
	2.4.4 INVALIDATE_IOTLB_PAGES
	2.4.5 INVALIDATE_INTERRUPT_TABLE
	2.4.6 PREFETCH_IOMMU_PAGES
	2.4.6.1 Event Processing for PREFETCH_IOMMU_PAGES

	2.4.7 COMPLETE_PPR_REQUEST
	2.4.8 INVALIDATE_IOMMU_ALL
	2.4.9 INSERT_GUEST_EVENT Command
	2.4.10 RESET_VMMIO Command
	2.4.11 IOMMU Ordering Rules
	2.4.11.1 Invalidation Command Ordering Requirements
	2.4.11.2 Invalidation Commands Interaction Requirements

	2.5 Event Logging
	2.5.1 Event Log Restart Procedure
	2.5.2 ILLEGAL_DEV_TABLE_ENTRY Event
	2.5.3 IO_PAGE_FAULT Event
	2.5.4 DEV_TAB_HARDWARE_ERROR Event
	2.5.5 PAGE_TAB_HARDWARE_ERROR Event
	2.5.6 ILLEGAL_COMMAND_ERROR Event
	2.5.7 COMMAND_HARDWARE_ERROR Event
	2.5.8 IOTLB_INV_TIMEOUT Event
	2.5.9 INVALID_DEVICE_REQUEST Event
	2.5.10 INVALID_PPR_REQUEST Event
	2.5.11 EVENT_COUNTER_ZERO Event
	2.5.12 GUEST_EVENT_FAULT Event
	2.5.13 VIOMMU_HARDWARE_ERROR Event
	2.5.14 RMP_PAGE_FAULT Event
	2.5.15 RMP_HARDWARE_ERROR Event
	2.5.16 IOMMU Event Reporting
	2.5.16.1 IOMMU Data Validation Sequence
	2.5.16.2 I/O Hardware Event Reporting Registers

	2.5.17 Event Log Dual Buffering

	2.6 Peripheral Page Request (PPR) Logging
	2.6.1 PPR Log Dual Buffering
	2.6.2 Peripheral Page Request Log Restart Procedure
	2.6.3 Peripheral Page Request Entry
	2.6.4 PPR Log Overflow Protection
	2.6.4.1 PPR Auto Response
	2.6.4.2 PPR Log Dual Buffering
	2.6.4.3 PPR Log Overflow Early Indication
	2.6.4.4 PPR Auto Response Always-on
	2.6.4.5 Block StopMark Messages

	2.7 Guest Virtual APIC (GA) Logging
	2.7.1 Guest vAPIC Virtual Interrupt Request Log
	2.7.2 Guest Virtual APIC Log Entry (Generic)
	2.7.3 Guest Virtual APIC Request Entry (GA_GUEST_NR)
	2.7.4 Guest Virtual APIC Log Restart Procedure

	2.8 IOMMU Interrupt Support
	2.9 Memory Address Routing and Control (MARC)
	2.10 vIOMMU
	2.10.1 vIOMMU Private Address Space
	2.10.1.1 vIOMMU Backing Storage Memory

	2.10.2 vIOMMU MMIO Resources
	2.10.3 vIOMMU Event Logging
	2.10.4 vIOMMU Extended Interrupt Remapping
	2.10.5 vIOMMU and EOI Bus Cycle

	2.11 Secure ATS Support
	2.12 IOMMU Secure Nested Paging (SEV-SNP) Support
	2.12.1 SEV-SNP RMP Access Checks
	2.12.2 SEV-SNP Restrictions
	2.12.2.1 SEV-SNP Register Locks
	2.12.2.2 SEV-SNP COMPLETION_WAIT Store Restrictions
	2.12.2.3 SEV-SNP Exclusion Range Restrictions
	2.12.2.4 SEV-SNP Page Mode Restrictions

	2.12.3 SEV-SNP Guest Virtual APIC Support

	3 Registers
	3.1 PCI Resources
	3.1.1 Accessing MSI Capability Block Registers

	3.2 IOMMU Base Capability Block Registers
	3.3 IOMMU Vendor Specific Capability Block Registers
	3.4 IOMMU MMIO Registers
	3.4.1 Control and Status Registers
	3.4.2 PPR Log Registers
	3.4.3 SMI Filter
	3.4.4 Guest Virtual APIC Log Registers
	3.4.5 Alternate PPR and Event Log Base Registers
	3.4.6 Device Table Segment [1–7] Base Address Registers
	3.4.7 Device-Specific Feature Registers
	3.4.8 MMIO Access to MSI Capability Block Registers
	3.4.9 Performance Optimization Control Register
	3.4.10 IOMMU x2APIC Control Register
	3.4.11 vIOMMU Status Register
	3.4.12 Memory Access and Routing (MARC) Registers
	3.4.13 Extended Feature 2 Register
	3.4.14 Reserved Register
	3.4.15 Command and Event Log Pointer Registers
	3.4.16 Command and Event Status Register
	3.4.17 PPR Log Head and Tail Pointer Registers
	3.4.18 Guest Virtual APIC Log Head and Tail Pointer Registers
	3.4.19 PPR Log B Head and Tail Pointer Registers
	3.4.20 Event Log B Head and Tail Pointer Registers
	3.4.21 PPR Log Overflow Protection Registers
	3.4.22 IOMMU Event Counter Registers
	3.4.22.1 MMIO Event Counter Control Registers
	3.4.22.2 MMIO Event Counter Configuration Registers

	3.5 IOMMU Virtual Function Controls MMIO Registers
	3.6 IOMMU Virtual Function MMIO Registers

	4 Implementation Considerations
	4.1 Caching and Invalidation Strategies
	4.2 IOMMU Topologies
	4.3 Issues Specific to the HyperTransport™ Architecture
	4.4 Chipset Specific Implementation Issues
	4.5 Software and Platform Firmware Implementation Issues

	5 I/O Virtualization ACPI Table
	5.1 IOMMU Control Flow
	5.2 I/O Virtualization Reporting Structure (IVRS)
	5.2.1 IVRS Header Fields
	5.2.2 I/O Virtualization Definition Blocks
	5.2.2.1 I/O Virtualization Hardware Definition (IVHD) Block
	5.2.2.2 I/O Virtualization Memory Definition (IVMD) Block

	5.3 I/O Virtualization Device Tree
	5.3.1 I/O Virtualization Device Tree Data Structure

	Index to Registers

