

NVM Express Explained

Why NVM Express?
There is an increasing gap in the price/performance of DRAM and hard drives, as shown in Figure 1.
NVM in the form of solid state drives (SSDs) is filling this gap, creating an “I/O Memory Tier” in the
system.

Figure 1: NVM Filling Price/Performance Gap

PCI Express (PCIe) connectivity on platforms continue to rise. For example, the Intel® 5000 Chipset
included 24 lanes of PCIe Gen1 that then scaled on the Intel® 5520 Chipset to 36 lanes of PCIe Gen2,
increasing both number of lanes and doubling bandwidth per lane. PCIe is the highest performance I/O
interface today delivering 1 GB/s per lane with PCIe Gen3.

PCIe SSDs are being delivered to the market today with unmatched performance. Many PCIe SSDs
support PCIe Gen2 with 8 lanes, delivering over 3 GB/s. Moving to PCIe Gen3, this doubles the
bandwidth that can be delivered in a single device to 6 GB/s. Latency is reduced by several
microseconds due to a faster interface as well as the ability to directly attach to the chipset or CPU. In
addition, direct attach to the chipset or CPU may eliminate an external host bus adapter which saves 7 to
10 Watts of power and over $10 in cost.

Analysts see a great opportunity for PCIe SSDs in the Enterprise market segment, as shown by the
forecasts in Figure 2. To enable the faster growth curve, a standard driver and consistent feature set
would be valuable.

10010-1 101 102 103 104100

101

102

103

104

105

106

Tape

HDD

DRAM

NVM

Cost ($/GB)

T
hr

o
ug

hp
u

t
(M

B
/S

)

Memory getting faster
to “feed” the CPU

CPU SRAM
Cache

HDDs becoming
cheaper but not

faster

Gap is widening

Figure 2: Analyst Projection of PCIe Interface Growth in Enterprise SSDs

Adoption of PCIe SSDs is inhibited by different implementations and unique drivers. Each SSD vendor
provides a driver for each OS that OEMs must validate. Each SSD vendor implements a different subset
of features in a different way leading to needless extra qualification effort by the OEM.

To enable faster adoption and interoperability of PCIe SSDs, industry leaders have defined the NVM
Express standard. The standard includes the register programming interface, command set, and feature
set definition. This enables standard drivers to be written for each OS and enables interoperability
between implementations that shortens OEM qualification cycles.

NVM Express defines an optimized command set that is scalable for the future and avoids burdening the
device with legacy support requirements. However, there are existing applications and software
infrastructure built upon the SCSI architectural model. The Workgroup is defining a translation document
that defines a mapping between SCSI and NVM Express specifications to enable a seamless transition to
NVM Express by preserving existing software infrastructure investments. This translation may be done
as a layer within the NVM Express driver. The document is targeted for publication in May.

NVM Express Overview
NVM Express is a scalable host controller interface designed to address the needs of Enterprise and
Client systems that utilize PCI Express based solid state drives. The interface provides an optimized
command issue and completion path. It includes support for parallel operation by supporting up to 64K
command queues within an I/O Queue. Additionally, support has been added for many Enterprise
capabilities like end-to-end data protection (compatible with T10 DIF and DIX standards), enhanced error
reporting, and virtualization.

The interface has the following key attributes:

x Does not require uncacheable / MMIO register reads in the command issue or completion path.
x A maximum of one MMIO register write is necessary in the command issue path.
x Support for up to 64K I/O queues, with each I/O queue supporting up to 64K commands.
x Priority associated with each I/O queue with well defined arbitration mechanism.
x All information to complete a 4KB read request is included in the 64B command itself, ensuring

efficient small random I/O operation.
x Efficient and streamlined command set.
x Support for MSI/MSI-X and interrupt aggregation.

x Support for multiple namespaces.
x Efficient support for I/O virtualization architectures like SR-IOV.
x Robust error reporting and management capabilities.

The specification defines a streamlined set of registers whose functionality includes:

x Indication of controller capabilities
x Status for device failures (command status is processed via CQ directly)
x Admin Queue configuration (I/O Queue configuration processed via Admin commands)
x Doorbell registers for scalable number of Submission and Completion Queues

The capabilities that the controller supports are indicated in the Controller Capabilities (CAP) register and
as part of the Controller and Namespace data structures returned in the Identify command. The Identify
Controller data structure indicates capabilities and settings that apply to the entire controller. The Identify
Namespace data structure indicates capabilities and settings that are specific to a particular namespace.

Enhanced NVMHCI is based on a paired Submission and Completion Queue mechanism. Commands
are placed by host software into the Submission Queue. Completions are placed into an associated
Completion Queue by the controller. Multiple Submission Queues may utilize the same Completion
Queue. The Submission and Completion Queues are allocated in host memory.

An Admin Submission and associated Completion Queue exist for the purpose of device management
and control – e.g., creation and deletion of I/O Submission and Completion Queues, aborting commands,
etc. Only commands that are part of the Admin Command Set may be issued to the Admin Submission
Queue.

An I/O Command Set is used with an I/O queue pair. This specification defines one I/O Command Set,
named the NVM Command Set.

Host software creates queues, up to the maximum supported by the controller. Typically the number of
command queues created is based on the system configuration and anticipated workload. For example,
on a four core processor based system, there may be a queue pair per core to avoid locking and ensure
data structures are created in the appropriate processor core’s cache. Figure 3 provides a graphical
representation of the queue pair mechanism, showing a 1:1 mapping between Submission Queues and
Completion Queues. Figure 4 shows an example where multiple I/O Submission Queues utilize the same
I/O Completion Queue on Core B.

Figure 3: Queue Pair Example, 1:1 Mapping

Figure 4: Queue Pair Example, n:1 Mapping

A Submission Queue (SQ) is a circular buffer with a fixed slot size that the host uses to submit commands
for execution by the controller. The host updates the appropriate SQ Tail doorbell register when there are
one to n new commands to execute. The previous SQ Tail value is overwritten in the controller when
there is a new doorbell register write. The controller fetches SQ entries in order from the Submission
Queue, however, it may then execute those commands in any order.

Each Submission Queue entry is a command. The command is 64 bytes in size. The physical memory
locations in host memory to use for data transfers are specified using Physical Region Page (PRP)
entries. Each command may include two PRP entries. If more than two PRP entries are necessary to
describe the data buffer, then a pointer to a PRP List that describes a list of PRP entries is provided.

A Completion Queue (CQ) is a circular buffer with a fixed slot size used to post status for completed
commands. A completed command is uniquely identified by a combination of the associated SQ identifier
and command identifier that is assigned by host software. Multiple Submission Queues may be
associated with a single Completion Queue. This feature may be used where a single worker thread
processes all command completions via one Completion Queue even when those commands originated
from multiple Submission Queues. The CQ Head pointer is updated by host software after it has
processed completion entries indicating the last free CQ entry. A Phase (P) bit is defined in the
completion entry to indicate whether an entry has been newly posted without consulting a register. This
enables host software to determine whether the new entry was posted as part of the previous or current
round of completion notifications. Specifically, each round through the Completion Queue locations, the
controller inverts the Phase bit.

Enterprise & Client Recommendations
NVM Express is a flexible specification, allowing solutions to be built that span the needs of Client and
Enterprise market segments. Figure 5 defines the features that are recommended for SSDs built for an
Enterprise or Client system.

Figure 5: Enterprise & Client Recommendations

Feature Enterprise Recommendation Client Recommendation

Number of Queues 16 to 128 2 to 8

Physically Discontiguous Queues Implementation choice No

Logical Block Size 4KB 4KB

Interrupt Support MSI-X MSI-X

Arbitration Mechanism Weighted Round Robin with
Urgent Priority Class or Round
Robin

Round Robin

PCIe Advanced Error Reporting Yes Yes

Firmware Update Required Required

End-to-end Data Protection Yes No

SR-IOV Support Yes No

Security Send & Receive Yes Yes

