
This paper is included in the Proceedings of the
22nd USENIX Conference on File and Storage Technologies.

February 27–29, 2024 • Santa Clara, CA, USA
978-1-939133-38-0

Open access to the Proceedings
of the 22nd USENIX Conference on

File and Storage Technologies
is sponsored by

I/O Passthru: Upstreaming a flexible and efficient
I/O Path in Linux

Kanchan Joshi, Anuj Gupta, Javier González, Ankit Kumar, Krishna Kanth Reddy,
Arun George, and Simon Lund, Samsung Semiconductor;

Jens Axboe, Meta Platforms Inc.

https://www.usenix.org/conference/fast24/presentation/joshi

I/O Passthru: Upstreaming a flexible and efficient I/O Path in Linux

Kanchan Joshi1, Anuj Gupta1, Javier González1, Ankit Kumar1, Krishna Kanth Reddy1, Arun George1,
Simon Lund1, and Jens Axboe2

1Samsung Semiconductor
2Meta Platforms Inc

Abstract

New storage interfaces continue to emerge fast on Non-
Volatile Memory Express (NVMe) storage. Fitting these in-
novations in the general-purpose I/O stack of operating sys-
tems has been challenging and time-consuming. The NVMe
standard is no longer limited to block-I/O, but the Linux I/O
advances historically centered around the block-I/O path. The
lack of scalable OS interfaces risks the adoption of the new
storage innovations.

We introduce I/O Passthru, a new I/O Path that has made
its way into the mainline Linux Kernel. The key ingredi-
ents of this new path are NVMe char interface and io_uring
command. In this paper, we present our experience building
and upstreaming I/O Passthru and report on how this helps
to consume new NVMe innovations without changes to the
Linux kernel. We provide experimental results to (i) com-
pare its efficiency against existing io_uring block path and (ii)
demonstrate its flexibility by integrating data placement into
Cachelib. FIO peak performance workloads show 16-40%
higher IOPS than block path.

1 Introduction

The Non-Volatile Memory Express (NVMe) protocol has
been the unquestionable catalyst for the broad adoption of
NAND-based storage devices and Solid-State Drives (SSDs).
NVMe continues to bring new capabilities in terms of per-
formance and functionality. Low latency, high bandwidth
SSDs (such as Intel optane [61], Kioxia’s FL6 [11], Sam-
sung’s ZNAND [25]) use NVMe as the protocol of choice.
Functionality expansion comes from new commands and
command sets that make NVMe viable for unconventional
block storage. In the past few years, several non-block stor-
age interfaces have gained popularity and, lately, standard-
ization in NVMe. Specifically, in data-placement solutions,
Open-Channel SSDs [37, 44, 47] gained popularity in the
academia and industry and eventually opened the door for the
standardization of Zoned Namespaces (ZNS) in NVMe. As

of today, NVMe standardizes several new interfaces, includ-
ing Multi-Stream (NVMe Directives) [19], Key-Value [19],
Zoned Namespaces [19], and Flexible Data Placement [17];
more interfaces such as Computational Storage [23] are still
under development.

It is relevant to note that all of these new interfaces re-
quire vertical integration across different storage stack layers
(driver, block-layer, file systems) and define new user inter-
faces to accommodate new device interfaces. Such changes
are not always welcomed, as they go against the principle of
maintaining a stable and general-purpose operating system.
Linux Kernel goes to great lengths to abstract the hardware
and never breaks the user-space. This presents a difficult trade-
off as robustness and maintenance of the operating system
lock horns with early enablement and adoption of NVMe
innovations.

In this paper, we present I/O Passthru, a novel I/O path
in mainline Linux kernel that (i) allows the deployment of
any new NVMe feature much faster as it is devoid of extra
abstractions and (ii) provides an efficient and feature-rich
user-interface. To summarize, our main contributions are the
following:

• We build a new NVMe passthrough I/O path which pro-
vides higher flexibility and efficiency than the block I/O
path (Section 4). We provide examples of how this path
enables NVMe interfaces, such as flexible data place-
ment, computational storage, and end-to-end data pro-
tection (Section 6).

• We introduce io_uring command, a generic facility to
implement asynchronous IOCTLs in the Linux kernel.
We detail its API and design (Section 4.2.1).

• We get this path upstream in the Linux Kernel (Section
5) and integrate it into user-space software, including
SPDK, xNVMe, liburing, fio and nvme-cli (Section 5.2).

• We elaborate on factors that influence the efficiency
of I/O and evaluate the proposed path. FIO peak-
performance workloads show 16-40% higher IOPS (Sec-
tion 7.1).

USENIX Association 22nd USENIX Conference on File and Storage Technologies 107

2 Motivation and Background

NVMe Driver

/dev/nvme0n1

Block abstrac�on

Speak
File

Speak
block

Device

Kernel
IO Stack

userland

FS abstrac�on

Syscall ioctl

A B C

1

2

Speak
NVMe

Speak
NVMe

Figure 1: Abstraction layers across different I/O paths and its
failures undermining usability, availability and efficiency

2.1 NVMe innovations vs Kernel abstractions
The primary motivation is the fast-paced growth of NVMe
innovations and the Linux kernel’s agility, or lack thereof,
to consume those. NVMe, initially meant to support only
block storage, is no longer tied to it. This is possible after
the introduction of an entity named command-set in NVMe
standard [19]. NVMe 2.0 specification defines three command
sets:

• NVM command set corresponds to block storage. Nev-
ertheless, it continues to grow newer ways of interacting
with storage. For example, (i) data-placement methods
like multi-stream and FDP [17] involve passing hints
with write, (ii) copy command that does not involve host
buffers and performs in-device copy instead.

• Zoned namespace command set exposes zones to the
Host and presents new I/O commands such as zone-
append and zone-management send/receive.

• Key-value command set does away with fixed-size logi-
cal blocks and speaks keys/values instead.

Moreover, new command sets for computational-storage are
shaping up. Command sets convey the divorce of NVMe from
block-only storage, thereby ensuring faster future innovation.

As for the Linux kernel, generic abstractions are at the
foundation. Figure 1 briefly describes various I/O paths in
the Linux kernel. NVMe driver collaborates with the block
layer, abstracts NVMe protocol, and presents a block device

/dev/nvme0n1 to the upper layer. This block device interface
helps the file system to be NVMe agnostic. For example, the
file system sends a write operation to the block device by
forming a bio with REQ_OP_WRITE, which is translated to a
protocol-specific write command by the underlying driver.
The block interface is the bedrock that file systems use to
create file abstraction. File systems collaborate with VFS to
provide specific implementations of certain user-space APIs
that are invoked as system calls. For the syscall users, the file
system itself is abstracted. This is shown as path (A) in the
figure. Path (B) is a subset when the block device is operated
directly without any file system. Figure 1 outlines specific
problems with the existing I/O paths:

• Many new NVMe commands do not fit into the exist-
ing user interface. Adding a new system call requires
a more generic use case than the NVMe-specific one.
Furthermore, a new syscall is discouraged as it has to
be supported indefinitely [1]. Consequently, there is an
increase in NVMe interfaces that still need a user inter-
face in Linux. For example, zone-append [35], a variant
of nameless writes [27] tailored for zoned storage which
is supported by the block layer for in-kernel users, but
lacks a user-space API due to the unconventional seman-
tics. Also, while we count on several mentioned tech-
nologies to improve in-device data-placement decisions,
we still do not have a streamlined way to communicate
placement information with the existing write APIs. Fi-
nally, despite several efforts to open-source support for
copy-offload [43, 54] given the existing hardware sup-
port [38, 45], we are yet to see mainline support with a
matching user interface.

• One way to alleviate the user-interface scarcity is by us-
ing the NVMe passthrough path, shown as (C) in the fig-
ure. This path is devoid of file/block abstractions. Appli-
cations can send the NVMe command using the ioctl
syscall [5]. However, this path comes at the cost of effi-
ciency, as ioctl is a synchronous operation and not a
good fit, particularly for the highly parallel NVMe stor-
age. Apart from blocking nature, ioctl (and therefore
passthrough I/O path) is far from various advancements
(outlined in the Section 2.2) that have gone into regular
read/write I/O path.

• All three paths (A), (B), and (C) rely on the block in-
terface. However, availability of block-interface is not
guaranteed. There are various situations when the block
interface goes haywire. For example, (i) if a namespace
is configured to transfer data and metadata as extended
LBA(logical block address), the block device is marked
with zero-capacity, which prevents further block/file I/O,
(ii) ZNS device without zone-append is marked read-
only, (iii) ZNS device with non-power of two zone-size
is marked hidden, and (iv) any non-block command-set,
e.g., Key-value, can not be operated with the block inter-
face.

108 22nd USENIX Conference on File and Storage Technologies USENIX Association

2.2 I/O advances with io_uring
io_uring is the latest and most feature-rich asynchronous I/O
subsystem in Linux [29]. It operates at the boundary of user-
space/kernel and covers storage and network I/O. The commu-
nication backbone is a pair of ring buffers, Submission Queue
(SQ)/Completion Queue (CQ), shared between user-space
and kernel. The application creates these rings by calling
io_uring_setup call. It prepares the I/O by extracting an
entry from SQ called SQE. It fills up the SQE and submits the
I/O by calling io_uring_enter system call [6]. Finally, it
obtains the completion by extracting an CQE entry from CQ.
io_uring brings various advancements in the I/O path, some
of which are outlined below:

• Batching:Allow submission of multiple I/O requests in
one shot with a single system call.

• SQPoll:Syscall-free submissions. The application can
offload the submission of I/O to a kernel thread that
io_uring creates.

• IOPoll:Completion can be polled by setting IOR-
ING_SETUP_IOPOLL flag on the ring. This gives
interrupt-free I/O.

• Chaining:Allows to establish ordering/dependencies
among multiple commands at the time of submission.
For example, write followed by a read (i.e., copy se-
mantics) and commonly used sequence open-read-close.
This is possible by chaining adjacent SQEs with the flag
IOSQE_IO_LINK and submitting the entire chain in a
go with a single syscall.

Ever since its inception, io_uring has added async variants
of various sync system calls [52]. Two methods for turning a
sync operation into async are outlined below.

• Worker-based async: spawn a worker thread and del-
egate sync operation to it. The advantage is the low
implementation effort. However, this causes overheads
and does not scale.

• True-async: fast and scalable as it does not involve
worker threads. It relies on ensuring that the submitter
does not block during the submission. Implementation
effort grows as all components participating in the oper-
ation (e.g., file system, driver) should provide wait-free
compliance.

io_uring employs both methods depending on the operation.
For more common read/write operations, it uses true-async
and falls back to worker-based async if need be. For known
blocking operations (e.g., mkdirat, fsync), worker-based async
is used in the first place itself.

3 Design considerations

3.1 Limitations of existing NVMe passthrough
The upstream Linux NVMe driver presents a passthrough
interface to applications using these ioctl-driven opcodes:

• NVME_IOCTL_IO64_CMD is used to send NVMe I/O com-
mands.

• NVME_IOCTL_ADMIN64_CMD is used to send NVMe ad-
min commands.

Both these ioctls operate on struct
nvme_passthru_cmd64, shown in Listing 1.

1 struct nvme_passthru_cmd64 {
2 __u8 opcode;
3 __u8 flags;
4 __u16 rsvd1;
5 __u32 nsid;
6 __u32 cdw2;
7 __u32 cdw3;
8 __u64 metadata;
9 __u64 addr;

10 __u32 metadata_len;
11 union {
12 __u32 data_len;
13 __u32 vec_cnt;
14 };
15 __u32 cdw10;
16 __u32 cdw11;
17 __u32 cdw12;
18 __u32 cdw13;
19 __u32 cdw14;
20 __u32 cdw15;
21 __u32 timeout_ms;
22 __u32 rsvd2;
23 __u64 result;
24 };

Listing 1: control structure that user-space sends for sync
passthorugh

User-space forms the command using this structure, which is
80 bytes in size. Upon submission, the NVMe driver copies
this to kernel-space using copy_from_user operation. It
maps the data (line 9) and metadata buffer (line 8) and even-
tually submits the NVMe command to the device. The caller
is put to wait until completion arrives. On completion, the
primary result is sent to the user-space using the ioctl return
value, and another one is updated into the result field (line
23). For the latter, the driver does a put_user operation.

While this interface allows to bypass the abstractions, it
suffers several limitations:

• It is tied to the block device, which itself is fragile.
• Ioctl, due to its blocking interface, harms both scalability

and efficiency. Figure 3 shows that io_uring random
read scales perfectly, while ioctl driven read stays flat.

• As the above sequence outlines, there is a per-command
overhead of copying command and result between user
and kernel space.

• This interface can only be used by the root user.

3.2 Design goals
Based on the shortcomings mentioned in Section 2.1 and 3.1,
we set the main design goals as follows:

• Block I/O independence: The block interface cannot
represent the non-block command sets that NVMe has.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 109

The new interface should have higher flexibility and
cover all NVMe command sets regardless of their non-
block semantics.

• Catch-all user interface: Adding a new syscall in Linux
every time NVMe gets a new command is impractical.
For every existing and future NVMe command, the so-
lution should ensure a user interface without coining
it.

• Efficient and scalable: NVMe represents fast and par-
allel storage. The new interface should have the same
or higher efficiency and scalability than the direct block
I/O path.

• General accessibility: The solution should not only be
locked to the root/admin user.

• Upstream acceptance: The solution should become
part of the official Linux repositories. This ensures that
adopters do not have to reinvent or maintain off-tree
code.

4 I/O Passthru in Kernel: Architecture and
Implementation

The proposed I/O path is shown in Figure 2, with the label
(D). It consists of a new char-interface /dev/ng0n1 as the
backend, which interfaces with io_uring using newly intro-
duced io_uring_command.

We also considered Linux AIO but chose io_uring for two
reasons. First, it is more efficient and feature-rich, as outlined
in Section 2.2. Second, it is a more active subsystem in the up-
stream Linux kernel. The following sections detail the design
and implementation by grouping those into three attributes -
(i) availability, (ii) efficiency, and (iii) accessibility.

NVMe Driver

/dev/nvme0n1

Block abstrac�on

Speak NVMe

Speak
File

Speak
block

Device

Kernel
IO Stack

userland

FS abstrac�on

Syscall ioctl

A B C

/dev/ng0n1

io_uring

D

Speak
NVMe

Figure 2: New passthrough I/O path, marked with (D) and
enclosed with the dotted rectangle.

4.1 Availability: NVMe generic char interface
NVMe generic device solves the availability problem associ-
ated with the block device. We modify the NVMe driver to
create a character device node for each namespace found on
the NVMe device, and more importantly, this is done regard-
less of any unsupported feature that may break the block
device (Section 2.1). Char device is also created for un-
known command sets, e.g., anything other than NVM and
ZNS. Therefore, the char interface is bound to appear for fu-
ture command sets without requiring any further code changes
to the NVMe driver. While the block device follows the nam-
ing convention /dev/nvme<X>n<Y>, the char device follows
/dev/ng<X>n<Y>. The term ng refers to NVMe-generic as
it applies to any NVMe command set. Listing 2 shows the
file_operations for this character device. User-space can
send any NVMe command through the character device us-
ing ioctl. Line 6 shows the ioctl handler in the NVMe
driver. More importantly, the NVMe char device also talks
to io_uring to enable a bunch of advances. This is shown in
line 8 via the uring_cmd handler and elaborated in the next
section.

1 const struct file_operations nvme_ns_chr_fops =
2 {
3 .owner = THIS_MODULE ,
4 .open = nvme_ns_chr_open ,
5 .release = nvme_ns_chr_release ,
6 .unlocked_ioctl = nvme_ns_chr_ioctl ,
7 .compat_ioctl = compat_ptr_ioctl ,
8 .uring_cmd = nvme_ns_chr_uring_cmd ,
9 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll

,
10 };

Listing 2: file_operations for NVMe char device

4.2 Infusing the efficiency & scalability
Solving the efficiency limitation of NVMe passthrough re-
quires solving the more fundamental problem in Linux - coin-
ing an efficient alternative of ioctl. This alternative must be
generic enough to be applied beyond the NVMe use case. To
that end, we added three new facilities in io_uring:io_uring
command, Big SQE, and Big CQE. Then, we outline how we
employ these facilities to construct a new NVMe passthrough
path. To further reduce the per I/O overhead, we wire up two
more capabilities: fixed-buffer and completion-polling.

4.2.1 io_uring command
A relatively simple way to introduce ioctl-like capability in
io_uring is to use the worker-based-async approach (Sec-
tion 2.2). However, that will be anything but scalable. Figure
3 shows io_uring scaling for 512b random-read with and with-
out the worker thread. With the default true-async approach,
throughput soars as queue depth increases and reaches 3.5M
IOPS. However, with the worker approach, the throughput

110 22nd USENIX Conference on File and Storage Technologies USENIX Association

0

1000

2000

3000

4000

1 8 16 32 64

K
 IO

P/
s

depth_batch

Worker-async True-async

0

1000

2000

3000

4000

1 8 16 32 64

K
 IO

P/
s

depth_batch

ioctl-read io-uring-read

a. ioctl-read v/s io-uring-read b. defer-to-worker v/s true-async

Figure 3: Performance comparison

does not increase beyond 500K. Therefore, we go by the
true-async design approach to add this new facility named
io_uring command. User interface involves preparing SQE
with a new operation code IORING_OP_URING_CMD. The com-
mand is to be placed inline within the SQE. This relieves the
application from the command allocation and provides zero-
copy communication as SQE is shared between user and kernel
space. Regular SQE has 16 bytes of free space that the applica-
tion can use for housing the command. The application gets
to reap the result from the CQE. Regular CQE provides a signed
4-byte value as the result.

Big SQE: Regular SQE with 16 bytes of free space is
not enough as the NVMe passthrough command is about 80
bytes in size (listing 1). Therefore, we introduce the facility
to create the ring with a larger SQE. Big SQE is double the
size of regular SQE and provides 80 bytes of free space. The
application can set up the ring with Big SQE by specifying
the flag IORING_SETUP_SQE_128.

Big CQE: Some NVMe commands return more than
one result to the user-space. For example, the zone-append
command returns the location where the write landed. And
io_uring regular CQE lacks the ability to return more than
one result. To tackle that, we introduce Big CQE, which is
double the size of regular CQE and provides 16 bytes of extra
space to return additional information to user-space. The flag
IORING_SETUP_CQE_32 allows the application to set up the
ring with Big CQE.

io_uring Provider

fops->uring_cmd(io_uring_cmd *, flags)

Update CQE

return (-EIOCBQUEUED) Submission
done

io_uring_cmd_done (io_uring_cmd *, ret, ret2) On
Comple�on

Figure 4: uring_cmd communication flow overview

We implemented io_uring command to be generic to sup-
port any underlying command. The command provider can
be any kernel component (e.g., file system, driver) that col-
laborates with io_uring. While the NVMe driver is the first
command-provider that got into the kernel, other examples
include ublk [48] and network sockets [49]. The commu-
nication between io_uring and command-provider follows
the true-async design approach (Section 2.2), and this is out-
lined in Figure 4. During the submission, io_uring processes
the SQE and prepares another struct io_uring_cmd (List-
ing 3) that is used for all further communication. io_uring
invokes the command-provider by ->uring_cmd handler of
file_operations. The provider does what is necessary for the
submission and returns to io_uring without blocking. Actual
completion is decoupled from submission and is rather done
when the provider calls io_uring_cmd_done with the pri-
mary and auxiliary result. The primary result is placed into
regular CQE, and the auxiliary result goes to Big CQE.

1 struct io_uring_cmd {
2 struct file *file;
3 const void *cmd;
4 union {
5 /* to defer completions to task context */
6 void (*task_work_cb) (struct io_uring_cmd *cmd

);
7 /* for polled completion */
8 void *cookie;
9 };

10 u32 cmd_op;
11 u32 flags;
12 u8 pdu[32]; /* available inline for free use */
13 };

Listing 3: struct io_uring_cmd for in-kernel
communication

4.2.2 Asynchronous processing

For the new io_uring driven passthrough we add the following
opcodes in NVMe driver:

• NVME_URING_CMD_IO : for NVMe I/O commands.
• NVME_URING_CMD_IO_VEC: vectored variant of the

above.
• NVME_URING_CMD_ADMIN: for NVMe admin commands.
• NVME_URING_CMD_ADMIN_VEC: vectored variant of the

above.
Vectored variants. Allow multiple data buffers to be passed
from user-space, similar to what is possible for classical I/O
using readv/writev syscalls. The above four operations expect
a new struct nvme_uring_cmd as input. This is shown in
Listing 4.

1 struct nvme_uring_cmd {
2 __u8 opcode;
3 __u8 flags;
4 __u16 rsvd1;
5 __u32 nsid;
6 __u32 cdw2;

USENIX Association 22nd USENIX Conference on File and Storage Technologies 111

7 __u32 cdw3;
8 __u64 metadata;
9 __u64 addr;

10 __u32 metadata_len;
11 __u32 data_len;
12 __u32 cdw10;
13 __u32 cdw11;
14 __u32 cdw12;
15 __u32 cdw13;
16 __u32 cdw14;
17 __u32 cdw15;
18 __u32 timeout_ms;
19 __u32 rsvd2;
20 };

Listing 4: control structure that user-space sends for uring
passthorugh

Zero copy. User-space creates this structure within the Big
SQE itself, eliminating the need for copy_from_user. Also,
the auxiliary result is returned via Big CQE, so put_user is
avoided. Therefore, this structure does not have a result field
embedded into it. This ensures zero-copy in the control path.
Zero memory-allocations. Unlike sync passthrough, we en-
sure that command completion is decoupled from submission
and the submitter is not blocked. This asynchronous process-
ing requires some fields to be persistent (until completion),
so these fields cannot be created on the stack. Dynamically
allocating these fields will add to the latency of I/O. We avoid
dynamic allocation by reusing the free space pdu inside the
struct io_uring_cmd (Listing 3, line 12) for such book-
keeping.

4.2.3 Fixed-buffer

I/O buffers must be locked into the memory for any data
transfer. This adds to the per I/O cost as buffers are pinned
and unpinned during the operation. However, this can be
optimized if the same buffers are used for I/O repeatedly.
Therefore, io_uring can pin several buffers upfront using
io_uring_register. The application can use these buffers
for I/O using opcodes such as IORING_OP_READ_FIXED
or IORING_OP_WRITE_FIXED.

We introduce this capability for uring_cmd using a new
flag IORING_URING_CMD_FIXED instead. The application
specifies this flag and buffer index in the SQE. Within the
kernel, the NVMe driver checks the presence of this flag. If
found set, it does not attempt to lock the buffer. Instead, it talks
to io_uring to reuse the previously locked region. To that end,
we add a new in-kernel API io_uring_cmd_import_fixed
that any command provider can use.

4.2.4 Completion polling

io_uring allows the application to do interrupt-free comple-
tions for read/write I/O. This helps in reducing the context-
switching overhead as the application engages in active
polling rather than relying on the interrupts. NVMe driver,

when loaded with polled_queues = N parameter, sets up
N polled queue-pair (SQ and CQ) for which NVMe device
does not generate the interrupt on command-completion.
Since io_uring decouples submission from completion, async
polling for completion is possible. This is more useful than
sync polling, as the application can do other work rather than
spinning on the CPU just after a single submission.

We extend async polling for uring_cmd too. For this, two
things are done differently during submission in the NVMe
driver - (i) polled-queue is chosen for command submis-
sion, (ii) a submission identifier cookie is stored in struct
io_uring_cmd (line 8, Listing 3). Two identifiers are re-
quired to pinpoint the particular command during completion:
(i) queue-identifier, in which the command is submitted, and
(ii) command-identifier within that queue. These two identi-
fiers are combined into a single 4-byte entity referred to as
cookie.

For completion, a new callback uring_cmd_iopoll (line
9, listing 2) is added that implements the polling loop for
matching completion. It extracts the cookie from struct
io_uring_cmd and uses that to look for the matching com-
pletion entry in the NVMe completion queue.

4.3 Accessibility: from root-only to general
Linux uses discretionary access control (DAC) as the default
way to manage object access. File mode is a numeric repre-
sentation that specifies who (file owner, member of a group,
or anyone else) is allowed to do what (read, write, or execute).

The VFS uses file mode to do the first level of permission
checks when the application requests to open the file. The
second level of check is done by the NVMe driver when
the application issues the command using the opened file
handle. However, the NVMe driver guards all passthrough
operations by a coarse-granular CAP_SYS_ADMIN check
that disregards the file mode completely.

Listing 5 shows an example in which ng0n1 has a less
restrictive file mode, i.e., 0666, compared to ng0n2.

1 $ ls -l --time -style=+ /dev/ng*
2 crw-rw-rw- 1 root root 242, 0 /dev/ng0n1
3 crw------- 1 root root 242, 1 /dev/ng0n2

Listing 5: example file-mode for char device

Even though ng0n1 has been marked to allow unpriv-
ileged read/write operations, nothing goes through. In-
stead, it behaves the same as ng0n2. The all-or-nothing
CAP_SYS_ADMIN check renders the passthrough interface
limited to the root user.

We modify the NVMe driver to implement a fine-granular
policy that takes file-mode and command type into account
for access control. This policy is defined as follows:

• When CAP_SYS_ADMIN is present, everything is al-
lowed as before. Otherwise, the command type (admin
command or I/O command) is checked.

112 22nd USENIX Conference on File and Storage Technologies USENIX Association

• Any I/O command that can write/alter the device is only
allowed if file-mode contains write permission.

• Any I/O command that only reads/obtains the informa-
tion from the device is allowed.

• Admin commands such as identify-namespace and
identify-controller are allowed. This is because these
commands provide information that is necessary to form
the I/O command. Other admin commands are not al-
lowed.

Beyond DAC, the uring_cmd also supports mandatory ac-
cess control (MAC). A new Linux Security Module (LSM)
hook is defined for uring_cmd and SELinux [15] and Smack
[16] implement the respective policy for the hook.

4.4 Block layer: To bypass or not
Does NVMe passthrough mean bypassing the block layer? It
is a common misconception. Passthrough is rather about not
placing another layering over the device. The NVMe generic
char-device, introduced in this work, does away with the block
abstraction altogether and presents cleaner semantics than
passthrough over the block-device. Figure 5 shows how I/O
Passthru interacts with the block layer during the submission.
The block layer implements many common functionalities,

io_uring Block-layer NVMe driver

nvme_uring_cmd()

request

Prepare request

1

2

Map user buffer

bio

3
Execute request

queue_rq()

DMA mapping
Push nvme cmd

Mu�-queue
dispatch

4

5

6

fops->uring_cmd()Dispatch
uring command

SQ CQ

7Submission
complete

Figure 5: Integration with the block layer

either entirely or in collaboration with the underlying storage
driver. Bypassing the block layer is not practical as it requires
either reinventing or giving away the functionalities, turning
the passthrough toothless. Table 1 presents the comparison.

• Abstract device limits. For example, the block layer
makes it possible to send larger read I/O on a device that
does not support single read commands to be larger than
64KB. For this, the block layer splits the larger read into
many 64KB commands. Passthrough, by definition, does
not abstract the device limits.

Feature Block I/O Passthrough I/O
Abstract device limits Yes No

Scheduler bypass No Yes
Core to queue mapping Yes Yes
Command tags mgmt. Yes Yes

Timeout value Global Per I/O
Abort Yes Yes

Table 1: Block layer functionalities: Block & Passthrough
path

• I/O scheduler. Since I/O schedulers can merge the
incoming I/Os, they are skipped for passthrough I/O.
This is not a spoilsport, as not using the I/O sched-
uler performs best on NVMe SSDs. Generally, NVMe
SSDs have deep queues and employ good internal I/O
scheduling to meet SLAs. Prior studies have shown that
Linux I/O schedulers (BFQ, mq-deadline, kyber) add
significant overheads (up to 50%) and hamper scala-
bility [12, 57]. Enterprise Linux distributions such as
RHEL and SLES keep ’none’ as the default scheduler
for NVMe.

• Muti queue. Block-layer abstracts the device queues
within the Blk-MQ infrastructure [36] and enables those
to be shared among available cores. Passthrough also
leverages this infrastructure.

• Tag management. The block layer manages the out-
standing commands for each hardware queue. It man-
ages the allocation/freeing of command IDs (tags) so
that the driver does not need to implement flow control.

• Command-timeout & Abort.If a command takes longer
than expected, the block layer can detect the timeout and
abort the outstanding command. Passthrough supports
user-specified timeout value (Listing 4, line 18), while
block-path uses a hard-coded value for timeout.

5 Upstream

5.1 Kernel I/O Passthru Support

Table 2 shows the upstream progression of the proposed I/O
path. All the constituent parts have made it to the official
Linux kernel repository [14].

Feature Kernel
Char-interface: initial support 5.13
Char-interface: any command-set 6.0
io_uring command 5.19
uring-passthrough for NVMe 5.19
Efficiency knobs (polling, fixed-buffer) 6.1
Unprivileged access for passthrough 6.2

Table 2: Upstream progression in the Linux kernel

USENIX Association 22nd USENIX Conference on File and Storage Technologies 113

5.2 Userspace I/O Passthru Support

5.2.1 xNVMe integration

xNVMe [51] is a cross-platform user-space library aimed at
providing I/O interface independence to applications. xNVMe
API abstracts multiple synchronous and asynchronous back-
ends, including io_uring, libaio, and spdk. Application coded
using xNVMe API can seamlessly switch among xNVMe’s
backends. We extend xNVMe to support a new asynchronous
backend named io_uring_cmd. This backend works with
NVMe character device /dev/ngXnY.

5.2.2 SPDK integration

SPDK contains a block-device layer, bdev, that implements a
consistent block-device API over various devices underneath.
For example, NVMe bdev is based on the NVMe driver of
SPDK. AIO bdev and uring bdev are other examples that
are implemented over Linux aio and io_uring respectively.
We add a new bdev xNVMe in SPDK (shown in Figure 6).
This single bdev allows to switch among AIO, io_uring, and
io_uring_cmd. This bdev became part of SPDK since release
version 22.09 [24].

NVMe aio uring xNVMe

BDEV Abstrac�on Layer

aio uring io_uring_cmdSPDK
Drivers

Kernel

Applica�ons

BlobFS/Blobstore

NVMe Device

libaio io_uring io_uring_cmd

xNVMe

Figure 6: Overview of SPDK stack, and bdev_xnvme module

5.2.3 Tooling

nvme-cli [18] is modified to list character interface
/dev/ngXnY. Any operation that nvme-cli can do on block-
interface /dev/nvmeXnY can also be done on char-interface
/dev/ngXnY.

Fio [30]: We add a new io-engine named io_uring_cmd.
The user must pass a cmd_type when using this engine. This
provides the flexibility to support other types of passthrough
commands in the future. For NVMe passthrough, cmd_type
is to be set as nvme, and the filename should be specified
as /dev/ngXnY. This new ioengine is part of the Fio re-
lease since version 3.31. Fio repository contains a utility
t/io_uring [32], which comes in handy to evaluate peak
performance obtained via io_uring. We extend this utility so
that io_uring NVMe passthrough can also be evaluated for
peak performance.

Liburing [31] is the library that provides a simpler inter-
face to io_uring applications. It is extended to support big-
SQE and big-CQE. Moreover, we add a bunch of tests that
issue uring-passthrough commands on the NVMe character
device /dev/ngXnY [40].

6 Enabling NVMe interfaces with I/O Passthru

In this section, we present examples showing how the flexibil-
ity and efficiency of I/O Passthru help consume some NVMe
features that are otherwise challenging to use in Linux.

6.1 Flexible Data Placement
Flexible data placement (FDP) is the latest host-guided data
placement method in the NVMe standard. The ratified pro-
posal [17] adds concepts such as reclaim unit (RU) and place-
ment identifier (PID). RU is analogous to the SSD garbage-
collection unit, and the host can place logical block addresses
into RU by specifying PID in the write command. LBAs writ-
ten with one-placement-identifier are not mixed with LBAs
written with another placement-identifier. This helps to sepa-
rate different data lifetimes and reduces write amplification
in the SSD.

When multi-stream support was standardized in NVMe as
directives, the Linux kernel developed the write-hint-based
infrastructure that allowed applications to send the placement
hints along with writes. However, this infrastructure is no
longer functional as its core pieces have been purged from
the mainline kernel [39]. I/O Passthru comes to the rescue
as applications can send placement hints without worrying
about vertical integration of FDP to various parts of the ker-
nel storage stack. We demonstrate this with Cachelib, which
can leverage FDP via I/O Passthru (Section 7.2). Also, FIO
io_uring_cmd ioengine has supported FDP since version 3.34.

6.2 Computational Storage
Computational storage is a new architecture that allows the
host to offload various compute operations to the storage, re-
ducing data movement and energy consumption. The NVMe
standardization is underway, and it involves presenting two
new namespaces.

114 22nd USENIX Conference on File and Storage Technologies USENIX Association

• Memory namespace refers to the subsystem-local-
memory (SLM), a byte-addressable memory to enable
the local processing of the SSD data. The host needs to
issue new NVMe commands to (i) Transfer data between
host-memory and SLM and (ii) Copy data between NVM
namespace and SLM.

• Compute namespace represents various compute pro-
grams executed on the data residing in SLM. The host
orchestrates the local data processing using a new set
of NVMe commands: execute-program, load-program,
activate-program, etc.

Supporting computational storage in Kernel is challenging be-
cause these new namespaces come with non-block semantics
and various new unconventional commands. However, the
generic char interface (/dev/ngXnY) comes up fine for both
SLM and Compute namespace. All new NVMe commands
can be issued efficiently with the I/O Passthru interface. Over-
all, this enables user-space to leverage computational storage
without any changes to the Kernel.

6.3 End-to-End Data Protection
E2E data protection detects data integrity issues early and
prevents corrupted data from being stored on the disk. Many
NVMe SSDs have the ability to store extra metadata (8, 16,
32, 64 bytes) along with the data. This metadata can be inter-
leaved with the data buffer (referred to as DIF) or in a separate
buffer (referred to as DIX) [20]. This ability comes in handy
to support erasure-coding, too. All or a portion (first or last
bytes) of this metadata can contain protection information
(PI) that contains checksum, reference tag, and application
tag. The NVMe SSD controller verifies the PI contents while
writing and reading.

Kernel support for E2E data protection [55] is limited, as
shown in Figure 7. DIF is not supported as passing unaligned
(e.g., 4096+8 bytes) data buffers is inconvenient. The block
layer supports DIX as metadata is kept in a separate buffer.
However, DIX is only supported if protection information
resides in the first bytes of metadata. Also, PI is block-layer
generated, and user-space applications cannot pass it due to a
lack of interface.

I/O Passthru does not face buffer alignment checks or user-
interface issues. The passthrough command structure allows
applications to pass metadata buffer and length (Listing 4,
lines 8 & 10). We have added DIF and DIX support in FIO
io_uring_cmd ioengine.

7 Experiments

Table 3 summarizes our experimental setup. We conducted
the experiments in three parts.

In the first part, we compare the efficiency of the new
passthrough I/O path against the block I/O path on a direct-
attached NVMe SSD. This is an apples-to-apples comparison

LB Data PIMD

(a) PI in last bytes of Metadata buffer

LB Data PI MD

(b) PI in first bytes of Metadata buffer

LB Data

PIMD

MD buffer

LB Data

PI MD

MD buffer

DIX

DIF

(a) PI in last bytes of Metadata buffer (b) PI in first bytes of Metadata buffer

Figure 7: Block device limitations for DIF and DIX cases

between block interface /dev/nvmeXnY and char-interface
/dev/ngXnY, as both are driven by io_uring. We exclude the
sync passthrough path as it is known not to scale due to be-
ing ioctl-driven. We use Fio and t/io_uring utility, which
is particularly suitable for peak-performance determination
due to its low overhead. Both these are configured to run an
unbuffered random read workload.

In the second part, we demonstrate the flexibility of the I/O
Passthru interface by applying it in the real-world applica-
tion Cachelib [3]. Cachelib is an open-source Caching engine
from Meta which leverages RAM and SSD in the solution.
Due to the nature of the workloads, Cachelib deployments
can incur SSD Write Amplification (WAF > 2) on high SSD
utilization scenarios. Therefore, the SSD utilization was lim-
ited to 50 percent in many production deployments. NVMe
FDP tackles this problem of high WAF by segregating I/Os
of different longevity types in the physical NAND media. We
use the Samsung SSD that supports data placement using the
NVMe FDP commands. Atop Cachelib, we run the produc-
tion workload and compare the write-amplification against
the case when FDP is not enabled.

In the third part, we compare the scalability of block and
passthrough I/O against the user-space SPDK NVMe driver.

Hardware Model
CPU AMD Ryzen 9 5900X 12-Core

Memory DDR4 16 GB
Board MSI MEG X570 GODLIKE

Storage

[1] Intel Optane P5800X, 400GB
Spec: 5M (512b RR), 1.6M (4K RW)

[2] Samsung FDP SSD, 7.5 TB
Software Version

OS Ubuntu 22.04 LTS
Kernel Linux 6.2

fio 3.35
Cachelib 0.10.2

Table 3: Experimental configuration

7.1 Efficiency Characterization
The SSD used for this evaluation is notably optimized
for 512b random reads and can show up to 5M IOPS
as per its specification [41]. This is why we focus only

USENIX Association 22nd USENIX Conference on File and Storage Technologies 115

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Base Base + FB Base + Poll Base + FB + Poll

M
 IO

P/
s

io_uring_block
io_uring_char

20%

24%

35%

40%

(a) Peak performance comparison on general kernel config

0

1

2

3

4

5

6

Base Base + FB Base + Poll Base + FB + Poll

M
 IO

P/
s

io_uring_block
io_uring_char

22%

16%

24%

31%

(b) Peak performance comparison on optimized kernel config

Figure 8: io_uring_char vs io_uring_block peak performance comparison

10

12

14

16

18

20

22

24

26

28

750 1250 1750 2250 2750 3250

sy
s-

cp
u

(%
)

submit_latency (nsec)

io_uring_char_plain

io_uring_char_�

io_uring_block_plain

io_uring_block_�
16KB

64KB

4KB

(a) Fixed-buffers effect on cpu-util and slat with increasing block size

0

1000

2000

3000

4000

5000

6000

1_1 8_2 16_4 32_8 64_16 128_32

K
 IO

P/
s

depth_batch

io_uring_block
io_uring_char

1%

3%

19%

13%

23%

31%

(b) Scalability across queue-depths on optimized kernel config

Figure 9: io_uring_char vs io_uring_block scalability across queue-depths and fixed-buffers effect

0

1

2

3

4

5

6

128_2 128_4 128_8 128_16 128_32

M
 IO

P/
s

depth_batch

sqpoll_disabled_block sqpoll_enabled_block
sqpoll_disabled_char sqpoll_enabled_char

Figure 10: SQPoll and batching effect

on read-only workload, as this helps to reveal the soft-
ware overheads and impact of optimizations readily. We
use two kernel configurations to refine the test setup for
overhead/efficiency measurements. The first one is the de-
fault configuration. The second one is a more performance-
friendly configuration with CONFIG_RETPOLINE and
CONFIG_PAGE_TABLE_ISOLATION options disabled.
The kernel added these options to mitigate the Spectre [46]
and Meltdown [50] hardware vulnerabilities. However, these
come at the cost of performance overhead [9, 56].
Peak performance using single CPU core: We saturate the

SSD to its maximum read performance, i.e., 5M IOPS. To
that end, we measure the individual and combined impact
of two knobs that elevate efficiency - (i) FB, which refers to
fixed-buffers (Section 4.2.3), and (ii) poll, which refers to
completion polling (Section 4.2.4). For this test, t/io_uring
is bounded to a single CPU core, and it issues 512b random
read at queue-depth 128 with batch size set to 32. Figure 8(a)
shows the result on default kernel config. Fixed-buffer shows
higher IOPS as the processing overhead of mapping buffers
is minimized. Poll also shows improved numbers as interrupt-
processing and context-switching overhead goes away. The
performance of the io_uring passthrough path is better than
the io_uring block path in all four cases. When both the knobs
(FB and Poll) are combined, performance reaches its peak.
Block I/O reaches up to 2.9M IOPS, while passthrough red
I/O goes 35% higher and reaches 3.9M IOPS. However, SSD
is capable of higher IOPS. Therefore, we repeat the test with
an optimized kernel config. Figure 8(b) shows the results.
There is notable improvement across all metrics. Block I/O
elevates to 3.83M IOPS, while passthrough I/O goes 31%
higher and saturates the SSD at 5M IOPS.

The reason is that I/O submission via the io_uring
passthrough path involves less processing than the io_uring
block path. It skips the attempts to split, merge, and i/o

116 22nd USENIX Conference on File and Storage Technologies USENIX Association

scheduling. Table 4 shows the execution time of the re-
spective io_uring handlers in the kernel (optimized config).
The time these functions take corresponds to the time taken
to submit the request to the device. The block-path handler,
io_read, takes 209 nanoseconds for a single submission. The
passthrough handler is 31% leaner and takes 144 nanoseconds
for the submission.

Handler (io_uring) Execution Time (nsec)
io_read (block) 209

io_uring_cmd (passthrough) 144

Table 4: Profiling of submission path

Scalability across queue-depths: We use t/io_uring to
issue 512b random reads and vary the queue-depths (rang-
ing from 1 to 128) and batch sizes (ranging from 1 to 32).
Figure 9(b) shows the IOPS comparison between block and
passthrough paths. At single queue-depth, utilization of the de-
vice bandwidth is lowest, and both paths yield the same perfor-
mance. This is expected and denotes the synchronous I/O per-
formance. As the queue-depth amplifies, parallel-processing
capabilities of software and hardware get leveraged better,
exhibiting a consistent increase in IOPS. A leaner submission
path matters more when I/O requests arrive at a higher rate. At
queue-depth 16, passthrough can process 19% more requests,
which goes up to 31% at 128 queue-depth. Cpu utilization
and submission-latency: comparison when fixed-buffer is
enabled for block and passthrough I/O path. For this test, we
use fio random read workload with single queue-depth and
varying block sizes - 4 KB, 16 KB, and 64 KB. Figure 9(a)
shows the result. In general, submission latency increases
with the larger record size. This is because during the sub-
mission, (i) physical pages (usually 4KB in size) backing the
I/O buffer need to be locked, and (ii) DMA (direct memory
address) mapping for these pages needs to be done. A larger
I/O buffer involves more physical pages, so it takes more time
to perform the aforementioned steps. With a smaller block
size, the submission and completion rate is high. But as we
shift to large record sizes, the workload becomes more I/O
bound. Therefore, CPU utilization is higher for 4KB record
size. Fixed-buffer variants (of block and passthrough path)
exhibit reduced submission latency and CPU cost of the I/O.
io_uring char with fixed-buffer produces the most optimal
combination of submission latency and CPU utilization.
SQPoll and batching: We use t/io_uring to issue 512b
random reads with queue-depth set to 128 and vary batch
sizes (ranging from 2 to 32). To reduce the contention and
variance across multiple runs, we affine the sqpoll thread
on a CPU core, which differs from the core to which
t/io_uring is bounded. This is achieved by specifying the
IORING_SETUP_SQ_AFF flag during io_uring’s ring setup
phase. Figure 10 compares the block and passthrough path
with the SQPoll option disabled/enabled. SQPoll helps elim-
inate system call costs. With lesser batching (which would

lead to more syscalls), enabling SQPoll results in better per-
formance for both block and passthrough paths. With a batch
size of 2, we get a 136% better performance by enabling the
SQPoll option for io_uring passthrough. Both batching and
SQPoll provide a means to reduce the syscall cost, but SQPoll
requires an extra CPU core so that its active polling loop does
not collide with the application thread that needs to submit
the I/O.

7.2 Data-placement in Cachelib

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

W
A

F

Interval 1 Unit = 200 minutes

Device WAF of Non-FDP vs FDP with 80% U�liza�on- KVCache workload for 4000
minutes

WAF_INTERVAL_NON_FDP WAF_INTERVAL_FDP

Figure 11: Cachelib WAF comparison: with and without FDP

Cachelib internally uses two I/O engines for data handling
in SSD storage: BigHash and BlockCache. BigHash handles
data of small sizes and random writes in 4K sizes. The large
item engine, BlockCache, issues a sequential flash-friendly
workload for data management. The leading cause of high
WAF is the intermixing of these two I/O patterns in the physi-
cal NAND media and the resultant impact on SSD garbage
collection. NVMe FDP commands allow the Host to send
write hints to the SSD to avoid intermixing within the phys-
ical media. We modified Cachelib to use the I/O Passthru
interface to send different placement identifiers with BigHash
and BlockCache writes. The changes are being discussed for
inclusion in the Cachelib upstream repository.

The evaluation was done using the built-in Cachebench tool.
Cachebench can replay the Meta production workloads avail-
able from the Cachelib website [4]. We have used the write-
only KVCache production workload for the experiments. We
ran the workload for about 66 hours, and the resulting WAF
comparison is shown in Figure 11. Without the placement
hints, the intermixing occurs, and SSD WAF soars above 2.
However, with the placement hints, intermixing reduces, and
WAF remains close to 1.

7.3 Comparison against SPDK
We extend the peak performance test on two drives and com-
pare scalability among io_uring_block, io_uring_char, and
SPDK paths. We use the SPDK perf tool, which has minimal
overhead during benchmarking. We used a distinct CPU core
for each device in the first experiment. So, two cores are used
for two devices. Figure 12(a) shows the comparison. The

USENIX Association 22nd USENIX Conference on File and Storage Technologies 117

0

2

4

6

8

10

12

1 2

M
 IO

P/
s

Number Of Devices

io_uring_block io_uring_char spdk

(a) Peak performance with multiple devices

0

2

4

6

8

10

12

1 2 2

M
 IO

P/
s

Number of Devices

io_uring_block io_uring_char spdk
Extra config changes

(b) Single core peak performance with multiple devices

Figure 12: io_uring_char vs io_uring_block vs spdk performance comparison

block path shows 7.55M IOPS with two devices, whereas the
passthrough and SPDK paths show 10M IOPS. The second ex-
periment examines the per-core scalability by forcing a single
CPU core for both devices. Figure 12(b) shows the compari-
son. SPDK continues to saturate both the devices. Block path
shows 4.4M, while passthrough reaches 6M IOPS.

Overall, I/O Passthru reduces the per-core efficiency gap
but is still far from kernel-bypass solutions like SPDK. There
are multiple reasons:

• The SPDK application (perf in this case) gets single-
user luxury due to exclusive ownership of the NVMe
device. It does not involve any extra code that must be
written to ensure sharing and synchronization among
multiple device users.

• I/O Passthru needs to use the block layer for its features
(Section 4.4), such as hardware-queue abstraction, tag
management, timeout/abort support, etc. The features
come at the expense of extra processing in the I/O path.

• A few features do not fit the passthrough path, e.g.,
writeback-throttling and Block-cgroups. Turning off
these features (by altering kernel config) cuts the pro-
cessing and improves the I/O performance. The forth-
coming 6.8 kernel skips these for passthrough I/O and
does not require config changes. Beyond these, there
are more general kernel configs that affect the I/O per-
formance nonetheless. We turn off the forced preemp-
tion [7] and set the timer frequency to 100 Hz [8]. Figure
12(b) shows that, with extra config changes, block I/O
performance improves to 7.9M, and passthrough I/O
improves to 8.3M. Given the numerous kernel config-
uration choices, we feel more performance tuning is
possible than we have explored here.

8 Discussion
8.1 I/O Passthru versus File systems
Relevance against file systems. Does passthrough make
sense when Linux offers many stable and mature file sys-
tems such as XFS, BTRFS, and Ext4? We see two reasons to

think that it does:

First, the maturity of these file systems comes in the way of
embracing the emerging hardware. Production file systems get
stability after going through battle-testing for a decade or so.
Therefore, this stability is prioritized over adopting novel stor-
age interfaces. In some cases, storage interfaces either change
over a short period or do not get widespread adoption. Such
cases pose the risk of bloated code and put a maintenance
burden on the file system maintainers. Passthrough helps to
consume new storage innovation readily in user space where
real-world usefulness can be established. The compelling in-
novations can then find their way into robust file systems and
other mature parts of the kernel.

Second, some large-scale storage systems have drifted away
from file systems due to a multitude of reasons involving low
performance, less control, and rigidity towards new hardware.
Ceph [59] moved away from file systems and developed a
new storage backend, BlueStore, which stores data directly
on the raw storage device. BlueStore is the default storage
backend, and it has been reported that 70% of Ceph users
use this in production [26]. Aerospike also uses SSD directly
using Linux direct I/O [2]. SPDK-based solutions do away
with file systems. I/O Passthru presents a new choice to design
storage backends with higher control, performance, and agility
to embrace new hardware.

Performance against file systems. Kernel file systems
create extra functionality above the block device, so their per-
formance is usually capped by what is possible for block
I/O. But FS-driven buffered I/O can perform better than
block/passthrough I/O when it completes from DRAM (page
cache) without causing thrashing. Table 5 compares filesys-
tem buffered I/O performance with passthrough I/O. We use
two types of fio random-read workloads, which vary in size -
8G and 32G. Both workloads spawn eight jobs, each doing
1GB I/O in the first case and 4GB I/O in the second case. FS
buffered I/O performs better when the I/O size is less than the
DRAM size (i.e., 16G) but worse when the workload cannot
fit in the DRAM.

118 22nd USENIX Conference on File and Storage Technologies USENIX Association

Read K-IOPS I/O Size
8GB 32GB

Ext4 (buffered) 5767 2046
XFS (buffered) 5817 1915

Passthrough 4536 4524

Table 5: Randread performance comparison

8.2 Multi-tenancy and SQ/CQ limits
I/O Passthru does not involve dedicating the resources to a sin-
gle application. Each io_uring ring (SQ/CQ pair) is a piece of
preallocated memory that the application gets. This allocation
is subject to the per-process limits. The application can use
the same ring to do I/O on multiple files, as each SQE takes a
distinct file handle as input. As for NVMe SQ/CQ, the upper
limit comes from the NVMe SSD. The block layer abstracts
available NVMe SQ/CQ under the per-core queues. The ap-
plication that gets scheduled on a particular core submits its
I/O to the underlying NVMe SQ mapped to that core. The ar-
chitecture ensures that multiple applications run concurrently
without reserving the hardware resources.

9 Related Work

SPDK allows applications to skip the abstraction layers and
work directly with NVMe devices. The application needs
to link with SPDK NVMe-driver to make use of it. How-
ever, SPDK NVMe-driver is a user-space library that maps
the entire PCI bar to a single application. SPDK users face
challenges when having to support multi-tenant deployment.
The SPDK NVMe driver can operate only in polled mode.
Also, storage is highly virtualized in a cloud environment, and
root/admin access to raw PCIe devices is not feasible.

The abbreviation "ng" for the NVMe generic interface is
inspired by "sg," which represents the SCSI generic interface.
The sg driver, part of the Linux kernel SCSI subsystem, cre-
ates the SCSI generic interface [10]. The sg driver allows
user applications to send SCSI commands to the underlying
SCSI device. This communication from the user-space is done
on character device node /dev/sgX, with syscalls such as
write, read, and ioctl. Synchronous communication is done via
SG_IO ioctl, which is analogous to NVME_IOCTL_IO64_CMD
ioctl provided by NVMe(Section 4.2.2). Asynchronous com-
munication using the sg interface is unhandy as it does not
interface with io_uring or Linux AIO [13]. Instead, this re-
quires pairing two system calls (read followed by a write) and
signal handling [21,22]. io_uring command opens up an ex-
cellent way to upgrade the async communication mechanism
of the SCSI generic interface.

Netlink sockets allow exchanging information in an async
fashion between kernel and user-space [53, 58]. However,
the netlink interface is designed for networking use cases
and not for generic file I/O [34]. Some prior works proposed
asynchronous ioctl via io_uring.

Pavel [33] and Hao [60] implemented by calling syn-
chronous VFS ioctl handler in the io_uring worker context.
This was anything but efficient (as Figure 3 shows). Kanchan
et al. [42] early approach was tied to block-device and had
allocation overhead. Jens [28] proposed a more generic and
efficient approach involving SQE overlay. However, the SQE
overlay did not forge ahead as (i) it provided 40 bytes of free
space, which was insufficient for NVMe passthrough com-
mands, and (ii) it brought certain plumbing unpleasantness in
io_uring code. These were overcome after the introduction of
Big SQE and cemented the proposal described in this paper.

10 Conclusion
Many new storage features/interfaces do not fit well within
the block layer and face adoption changes due to the absence
of appropriate syscall interfaces in Linux. Consequently, early
adopters are left with two options: (i) use synchronous NVMe
passthrough on block interface that may or may not exist, or
(ii) switch to kernel-bypass solutions. We create a new alter-
native by adding a new passthrough path in the kernel. This
path combines an always-available NVMe character interface
with io_uring. Overall, this opens up an efficient way to use
any current/future NVMe feature with the mainline kernel
itself, i.e., all NVMe features with zero code in the kernel.
We integrate this path to various user-space libraries/tools
and present examples of how this can ease the enablement
of FDP SSD, End-to-end data protection, and computational
storage. As for efficiency, results demonstrate that the new
passthrough path outperforms the existing block I/O path.

We also introduce an alternative of ioctl within io_uring.
The io_uring_command infrastructure ensures that io_uring
capabilities are not limited to existing mechanisms (i.e., clas-
sical read/write or other established syscalls) but will also be
available to apply on new primitives. As is the case between
host-system and storage, there will always be a requirement
to communicate between user-space and kernel in a way that
has not been imagined before. New pathways will remain in
need. We hope io_uring_command will significantly ease up
building efficient pathways between user-space and kernel.

Acknowledgement

We would like to thank our shepherd Sungjin Lee and the
anonymous reviewers for their valuable feedback. We extend
our appreciation to Joel Granados, Minwoo Im, Stefan Roesch,
Vincent Kang Fu, Luis Chamberlain, and Christoph Hellwig
for their contributions to I/O Passthru.

References
[1] Adding new system call. https://docs.kernel.org/

process/adding-syscalls.html.

[2] Aerospike using raw storage. https://docs.aerospike.com/
server/operations/plan/ssd/ssd_setup.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 119

https://docs.kernel.org/process/adding-syscalls.html
https://docs.kernel.org/process/adding-syscalls.html
https://docs.aerospike.com/server/operations/plan/ssd/ssd_setup
https://docs.aerospike.com/server/operations/plan/ssd/ssd_setup

[3] Cachelib. https://github.com/facebook/CacheLib.

[4] Evaluating ssd hardware for facebook workloads. https:
//cachelib.org/docs/Cache_Library_User_Guides/
Cachebench_FB_HW_eval/.

[5] ioctl, man page. https://man7.org/linux/man-pages/
man2/ioctl.2.html.

[6] io_uring_enter, man page. https://man7.org/linux/man-
pages/man2/io_uring_enter.2.html.

[7] Kernel config for preemption. https://git.kernel.org/
pub/scm/linux/kernel/git/stable/linux.git/
tree/kernel/Kconfig.preempt.

[8] Kernel config for timer frequency. https://git.kernel.
org/pub/scm/linux/kernel/git/stable/linux.git/
tree/kernel/Kconfig.hz.

[9] Kernel pti and its overhead. https://www.kernel.org/doc/
html/latest/x86/pti.html.

[10] Kernel. scsi generic. https://docs.kernel.org/scsi/
scsi-generic.html.

[11] Kioxia fl6 ssd. https://www.kioxia.com/en-
jp/business/ssd/enterprise-ssd/fl6.html.

[12] Linux 5.6 i/o scheduler benchmarks. https://www.phoronix.
com/review/linux-56-nvme.

[13] Linux aio. https://github.com/littledan/linux-aio.

[14] Linux kernel repository. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git.

[15] Lsm - selinux. https://git.kernel.org/pub/
scm/linux/kernel/git/stable/linux.git/tree/
Documentation/admin-guide/LSM/SELinux.rst.

[16] Lsm - smack. https://git.kernel.org/pub/scm/
linux/kernel/git/stable/linux.git/tree/
Documentation/admin-guide/LSM/Smack.rst.

[17] Nvme 2.0 - tp 4146, fdp. https://nvmexpress.org/wp-
content/uploads/NVM-Express-2.0-Ratified-
TPs_12152022.zip.

[18] nvme-cli utility. https://github.com/linux-nvme/nvme-
cli.

[19] Nvme command set. https://nvmexpress.org/
developers/nvme-command-set-specifications.

[20] Nvme data protection. https://www.ripublication.com/
ijaer19/ijaerv14n7_10.pdf.

[21] Scsi generic, async usage. https://tldp.org/HOWTO/SCSI-
Generic-HOWTO/async.html.

[22] Scsi generic, theory of operation. https://tldp.org/HOWTO/
SCSI-Generic-HOWTO/theory.html.

[23] Snia. computational storage. https://www.snia.org/
computational.

[24] spdk-release. https://github.com/spdk/spdk/
releases/tag/v22.09.

[25] Z-ssd. https://semiconductor.samsung.com/ssd/z-
ssd/.

[26] AGHAYEV, A., WEIL, S., KUCHNIK, M., NELSON, M., GANGER,
G. R., AND AMVROSIADIS, G. File systems unfit as distributed storage
backends: lessons from 10 years of ceph evolution. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles (2019),
pp. 353–369.

[27] ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND PRAB-
HAKARAN, V. Removing the costs of indirection in flash-based {SSDs}
with nameless writes. In 2nd Workshop on Hot Topics in Storage and
File Systems (HotStorage 10) (2010).

[28] AXBOE, J. async ioctl. https://lwn.net/Articles/
844875/.

[29] AXBOE, J. io_uring doc. https://kernel.dk/io_uring.
pdf.

[30] AXBOE, J., ET AL. Flexible i/o tester. https://github.com/
axboe/fio.

[31] AXBOE, J., ET AL. Liburing. https://github.com/axboe/
liburing.

[32] AXBOE, J., ET AL. t/io_uring utility. https://github.com/
axboe/fio/blob/master/t/io_uring.c.

[33] BEGUNKOV, P. async ioctl. https://lore.kernel.org/
all/f77ac379ddb6a67c3ac6a9dc54430142ead07c6f.
1576336565.git.asml.silence@gmail.com/.

[34] BERGMANN, A. How to not invent kernel interfaces. In LinuxConf
Europe 2007 Conference and Tutorials, 2.-5. zárí 2007 (2007).

[35] BJØRLING, M. Zone append: A new way of writing to zoned storage.
Santa Clara, CA, February. USENIX Association.[Cited on page.]
(2020).

[36] BJØRLING, M., AXBOE, J., NELLANS, D., AND BONNET, P. Linux
block io: Introducing multi-queue ssd access on multi-core systems. In
Proceedings of the 6th International Systems and Storage Conference
(New York, NY, USA, 2013), SYSTOR ’13, Association for Computing
Machinery.

[37] BJØRLING, M., GONZALEZ, J., AND BONNET, P. LightNVM: The
linux Open-Channel SSD subsystem. In 15th USENIX Conference on
File and Storage Technologies (FAST 17) (Santa Clara, CA, Feb. 2017),
USENIX Association, pp. 359–374.

[38] GONZÁLEZ, J. Zoned namespaces: Standardization and linux ecosys-
tem. SDC EMEA (2020).

[39] HELLWIG, C. Remove write-hint. https://lore.kernel.org/
all/20220304175556.407719-2-hch@lst.de/.

[40] IM, M. generic per-namespace chardev. https://lore.
kernel.org/linux-nvme/20210421074504.57750-2-
minwoo.im.dev@gmail.com/.

[41] INTEL. Optane p5800x spec. https://www.intel.
com/content/www/us/en/products/docs/memory-
storage/solid-state-drives/data-center-
ssds/optane-ssd-p5800x-p5801x-brief.html.

[42] JOSHI, K. async ioctl. https://lore.kernel.org/linux-
nvme/20210127150029.13766-1-joshi.k@samsung.
com/.

[43] JOSHI, K., AND S, S. Towards copy-offload in linux nvme. SDC
(2021).

[44] JUNG, T., LEE, Y., AND SHIN, I. Openssd platform simulator to reduce
ssd firmware test time. Life Science Journal 11, 7 (2014).

[45] KNIGHT, F. Storage data movement offload. NetApp, Sep (2011).

[46] KOCHER, P., HORN, J., FOGH, A., GENKIN, D., GRUSS, D., HAAS,
W., HAMBURG, M., LIPP, M., MANGARD, S., PRESCHER, T., ET AL.
Spectre attacks: Exploiting speculative execution. Communications of
the ACM 63, 7 (2020), 93–101.

[47] KWAK, J., LEE, S., PARK, K., JEONG, J., AND SONG, Y. H. Cos-
mos+ openssd: Rapid prototype for flash storage systems. ACM Trans.
Storage 16, 3 (jul 2020).

[48] LEI, M. ublk io_uring_cmd. https://lore.kernel.
org/linux-block/20220628160807.148853-2-
ming.lei@redhat.com/.

[49] LEITAO, B. uring_cmd network-socket. https://lore.
kernel.org/lkml/20230627134424.2784797-1-
leitao@debian.org/.

120 22nd USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/facebook/CacheLib
https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_FB_HW_eval/
https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_FB_HW_eval/
https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_FB_HW_eval/
https://man7.org/linux/man-pages/man2/ioctl.2.html
https://man7.org/linux/man-pages/man2/ioctl.2.html
https://man7.org/linux/man-pages/man2/io_uring_enter.2.html
https://man7.org/linux/man-pages/man2/io_uring_enter.2.html
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.preempt
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.preempt
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.preempt
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.hz
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.hz
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.hz
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://docs.kernel.org/scsi/scsi-generic.html
https://docs.kernel.org/scsi/scsi-generic.html
https://www.kioxia.com/en-jp/business/ssd/enterprise-ssd/fl6.html
https://www.kioxia.com/en-jp/business/ssd/enterprise-ssd/fl6.html
https://www.phoronix.com/review/linux-56-nvme
https://www.phoronix.com/review/linux-56-nvme
https://github.com/littledan/linux-aio
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/LSM/SELinux.rst
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/LSM/SELinux.rst
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/LSM/SELinux.rst
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/LSM/Smack.rst
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/LSM/Smack.rst
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/LSM/Smack.rst
https://nvmexpress.org/wp-content/uploads/NVM-Express-2.0-Ratified-TPs_12152022.zip
https://nvmexpress.org/wp-content/uploads/NVM-Express-2.0-Ratified-TPs_12152022.zip
https://nvmexpress.org/wp-content/uploads/NVM-Express-2.0-Ratified-TPs_12152022.zip
https://github.com/linux-nvme/nvme-cli
https://github.com/linux-nvme/nvme-cli
https://nvmexpress.org/developers/nvme-command-set-specifications
https://nvmexpress.org/developers/nvme-command-set-specifications
https://www.ripublication.com/ijaer19/ijaerv14n7_10.pdf
https://www.ripublication.com/ijaer19/ijaerv14n7_10.pdf
https://tldp.org/HOWTO/SCSI-Generic-HOWTO/async.html
https://tldp.org/HOWTO/SCSI-Generic-HOWTO/async.html
https://tldp.org/HOWTO/SCSI-Generic-HOWTO/theory.html
https://tldp.org/HOWTO/SCSI-Generic-HOWTO/theory.html
https://www.snia.org/computational
https://www.snia.org/computational
https://github.com/spdk/spdk/releases/tag/v22.09
https://github.com/spdk/spdk/releases/tag/v22.09
https://semiconductor.samsung.com/ssd/z-ssd/
https://semiconductor.samsung.com/ssd/z-ssd/
https://lwn.net/Articles/844875/
https://lwn.net/Articles/844875/
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/axboe/liburing
https://github.com/axboe/liburing
https://github.com/axboe/fio/blob/master/t/io_uring.c
https://github.com/axboe/fio/blob/master/t/io_uring.c
https://lore.kernel.org/all/f77ac379ddb6a67c3ac6a9dc54430142ead07c6f.1576336565.git.asml.silence@gmail.com/
https://lore.kernel.org/all/f77ac379ddb6a67c3ac6a9dc54430142ead07c6f.1576336565.git.asml.silence@gmail.com/
https://lore.kernel.org/all/f77ac379ddb6a67c3ac6a9dc54430142ead07c6f.1576336565.git.asml.silence@gmail.com/
https://lore.kernel.org/all/20220304175556.407719-2-hch@lst.de/
https://lore.kernel.org/all/20220304175556.407719-2-hch@lst.de/
https://lore.kernel.org/linux-nvme/20210421074504.57750-2-minwoo.im.dev@gmail.com/
https://lore.kernel.org/linux-nvme/20210421074504.57750-2-minwoo.im.dev@gmail.com/
https://lore.kernel.org/linux-nvme/20210421074504.57750-2-minwoo.im.dev@gmail.com/
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://lore.kernel.org/linux-nvme/20210127150029.13766-1-joshi.k@samsung.com/
https://lore.kernel.org/linux-nvme/20210127150029.13766-1-joshi.k@samsung.com/
https://lore.kernel.org/linux-nvme/20210127150029.13766-1-joshi.k@samsung.com/
https://lore.kernel.org/linux-block/20220628160807.148853-2-ming.lei@redhat.com/
https://lore.kernel.org/linux-block/20220628160807.148853-2-ming.lei@redhat.com/
https://lore.kernel.org/linux-block/20220628160807.148853-2-ming.lei@redhat.com/
https://lore.kernel.org/lkml/20230627134424.2784797-1-leitao@debian.org/
https://lore.kernel.org/lkml/20230627134424.2784797-1-leitao@debian.org/
https://lore.kernel.org/lkml/20230627134424.2784797-1-leitao@debian.org/

[50] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS, W.,
HORN, J., MANGARD, S., KOCHER, P., GENKIN, D., YAROM, Y.,
ET AL. Meltdown: Reading kernel memory from user space. Commu-
nications of the ACM 63, 6 (2020), 46–56.

[51] LUND, S. A., BONNET, P., JENSEN, K. B., AND GONZALEZ, J. I/o
interface independence with xnvme. In Proceedings of the 15th ACM
International Conference on Systems and Storage (2022), pp. 108–119.

[52] LWN. The rapid growth of io_uring. https://lwn.net/
Articles/810414/.

[53] NEIRA-AYUSO, P., GASCA, R. M., AND LEFEVRE, L. Communicat-
ing between the kernel and user-space in linux using netlink sockets.
Software: Practice and Experience 40, 9 (2010), 797–810.

[54] PETERSEN, M. K. Copy offload. here be dragons. https://oss.
oracle.com/~mkp/docs/xcopy.pdf.

[55] PETERSEN, M. K. Dif, dix and linux data integrity. Oracle, down-
loaded (2010), 25.

[56] PROUT, A., ARCAND, W., BESTOR, D., BERGERON, B., BYUN, C.,
GADEPALLY, V., HOULE, M., HUBBELL, M., JONES, M., KLEIN, A.,
ET AL. Measuring the impact of spectre and meltdown. In 2018 IEEE
High Performance extreme Computing Conference (HPEC) (2018),
IEEE, pp. 1–5.

[57] REN, Z., AND TRIVEDI, A. Performance characterization of modern
storage stacks: Posix i/o, libaio, spdk, and io_uring. In Proceedings
of the 3rd Workshop on Challenges and Opportunities of Efficient and
Performant Storage Systems (2023), pp. 35–45.

[58] ROSEN, R. Netlink sockets. In Linux Kernel Networking. Springer,
2014, pp. 13–35.

[59] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D., AND
MALTZAHN, C. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th symposium on Operating systems
design and implementation (2006), pp. 307–320.

[60] XU, H. async ioctl. https://lore.kernel.org/
all/1604303041-184595-1-git-send-email-
haoxu@linux.alibaba.com/.

[61] ZHANG, J., LI, P., LIU, B., MARBACH, T. G., LIU, X., AND WANG,
G. Performance analysis of 3d xpoint ssds in virtualized and non-
virtualized environments. In 2018 IEEE 24th International Conference
on Parallel and Distributed Systems (ICPADS) (2018), IEEE, pp. 1–10.

A Artifact Appendix

Abstract
The evaluated artifact is provided in a git repository and con-
tains the scripts used for running the experiments presented
in this paper.

Scope
The artifact contains the scripts to reproduce the results ob-
tained in Figure 8, Figure 9, Figure 10 and Figure 11.

Contents
The artifact contains the steps to build and install linux, links
to patches for kernel and userspace contributions. It also con-
tains the scripts used for performance benchmarks and cache-
lib experiments in the benchmark and cachelib-experiments
subdirectory respectively. Also, each subdirectory has a sepa-
rate README file, specifying the usage instructions.

Hosting
The artifact is available at https://github.com/
anuj7781/io-passthru. All necessary instructions
are provided in the README.md file. We encourage the
users to use the latest version of the repository, since it may
include bug fixes.

Requirements
The experiments can be run on any Linux machine (with
6.2 kernel). The benchmark experiments can be run on any
NVMe drive, while the cachelib experiments can be run only
on a FDP device. In order to reproduce the results, one needs
to use the setup mentioned in Table 3.

Notes

USENIX Association 22nd USENIX Conference on File and Storage Technologies 121

https://lwn.net/Articles/810414/
https://lwn.net/Articles/810414/
https://oss.oracle.com/~mkp/docs/xcopy.pdf
https://oss.oracle.com/~mkp/docs/xcopy.pdf
https://lore.kernel.org/all/1604303041-184595-1-git-send-email-haoxu@linux.alibaba.com/
https://lore.kernel.org/all/1604303041-184595-1-git-send-email-haoxu@linux.alibaba.com/
https://lore.kernel.org/all/1604303041-184595-1-git-send-email-haoxu@linux.alibaba.com/
https://github.com/anuj7781/io-passthru
https://github.com/anuj7781/io-passthru

	Introduction
	Motivation and Background
	NVMe innovations vs Kernel abstractions
	I/O advances with io_uring

	Design considerations
	Limitations of existing NVMe passthrough
	Design goals

	I/O Passthru in Kernel: Architecture and Implementation
	Availability: NVMe generic char interface
	Infusing the efficiency & scalability
	io_uring command
	Asynchronous processing
	Fixed-buffer
	Completion polling

	Accessibility: from root-only to general
	Block layer: To bypass or not

	Upstream
	Kernel I/O Passthru Support
	Userspace I/O Passthru Support
	xNVMe integration
	SPDK integration
	Tooling

	Enabling NVMe interfaces with I/O Passthru
	Flexible Data Placement
	Computational Storage
	End-to-End Data Protection

	Experiments
	Efficiency Characterization
	Data-placement in Cachelib
	Comparison against SPDK

	Discussion
	I/O Passthru versus File systems
	Multi-tenancy and SQ/CQ limits

	Related Work
	Conclusion
	Artifact Appendix

