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Floating-Point Unit 31

The Intel Architecture Floating-Point Unit (FPU) provides high-performance floating-point 
processing capabilities. It supports the real, integer, and BCD-integer data types and the floating-
point processing algorithms and exception handling architecture defined in the IEEE 754 and 854 
Standards for Floating-Point Arithmetic. The FPU executes instructions from the processor’s 
normal instruction stream and greatly improves the efficiency of Intel Architecture processors in 
handling the types of high-precision floating-point processing operations commonly found in 
scientific, engineering, and business applications.

This chapter describes the data types that the FPU operates on, the FPU’s execution environment, 
and the FPU-specific instruction set. Detailed descriptions of the FPU instructions are given in 
“Instruction Page Key”.

31.1 Compatibility and Ease of Use of the Intel 
Architecture FPU

The architecture of the Intel Architecture FPU has evolved in parallel with the architecture of early 
Intel Architecture processors. The first Intel Math Coprocessors (the Intel 8087, Intel 287, and Intel 
387) were companion processors to the Intel 8086/8088, Intel 286, and Intel386 processors, 
respectively, and were designed to improve and extend the numeric processing capability of the 
Intel Architecture. The Intel486 DX processor for the first time integrated the CPU and the FPU 
architectures on one chip. The Pentium processor’s FPU offered the same architecture as the 
Intel486 DX processor’s FPU, but with improved performance. The Pentium Pro processor’s FPU 
further extended the floating-point processing capability of Intel Architecture family of processors 
and added several new instructions to improve processing throughput.

Throughout this evolution, compatibility among the various generations of FPUs and math 
coprocessors has been maintained. For example, the Pentium Pro processor’s FPU is fully 
compatible with the Pentium and Intel486 DX processors’s FPUs.

Each generation of the Intel Architecture FPUs have been explicitly designed to deliver stable, 
accurate results when programmed using straightforward “pencil and paper” algorithms, bringing 
the functionality and power of accurate numeric computation into the hands of the general user. 
The IEEE 754 standard specifically addresses this issue, recognizing the fundamental importance 
of making numeric computations both easy and safe to use. 

For example, some processors can overflow when two single-precision floating-point numbers are 
multiplied together and then divided by a third, even if the final result is a perfectly valid 32-bit 
number. The Intel Architecture FPUs deliver the correctly rounded result. Other typical examples 
of undesirable machine behavior in straightforward calculations occur when computing financial 
rate of return, which involves the expression (1 + i)n or when solving for roots of a quadratic 
equation:



31-2 Intel Architecture Software Developer’s Manual

Floating-Point Unit

If a does not equal 0, the formula is numerically unstable when the roots are nearly coincident or 
when their magnitudes are wildly different. The formula is also vulnerable to spurious over/
underflows when the coefficients a, b, and c are all very big or all very tiny. When single-precision 
(4-byte) floating-point coefficients are given as data and the formula is evaluated in the FPU’s 
normal way, keeping all intermediate results in its stack, the FPU produces impeccable single-
precision roots. This happens because, by default and with no effort on the programmer’s part, the 
FPU evaluates all those sub-expressions with so much extra precision and range as to overwhelm 
almost any threat to numerical integrity.

If double-precision data and results were at issue, a better formula would have to be used, and once 
again the FPU’s default evaluation of that formula would provide substantially enhanced numerical 
integrity over mere double-precision evaluation.

On most machines, straightforward algorithms will not deliver consistently correct results (and will 
not indicate when they are incorrect). To obtain correct results on traditional machines under all 
conditions usually requires sophisticated numerical techniques that go beyond typical 
programming practice. General application programmers using straightforward algorithms will 
produce much more reliable programs using the Intel architectures. This simple fact greatly 
reduces the software investment required to develop safe, accurate computation-based products.

Beyond traditional numeric support for scientific applications, the Intel architectures have built-in 
facilities for commercial computing. They can process decimal numbers of up to 18 digits without 
round-off errors, performing exact arithmetic on integers as large as 264 (or 1018). Exact arithmetic 
is vital in accounting applications where rounding errors may introduce monetary losses that 
cannot be reconciled.

The Intel FPU’s contain a number of optional numerical facilities that can be invoked by 
sophisticated users. These advanced features include directed rounding, gradual underflow, and 
programmed exception-handling facilities.

These automatic exception-handling facilities permit a high degree of flexibility in numeric 
processing software, without burdening the programmer. While performing numeric calculations, 
the processor automatically detects exception conditions that can potentially damage a calculation 
(for example, X ÷ 0 or  when X < 0). By default, on-chip exception logic handles these 
exceptions so that a reasonable result is produced and execution may proceed without program 
interruption. Alternatively, the processor can invoke a software exception handler to provide 
special results whenever various types of exceptions are detected.

31.2 Real Numbers and Floating-Point Formats

This section describes how real numbers are represented in floating-point format in the Intel 
Architecture FPU. It also introduces terms such as normalized numbers, denormalized numbers, 
biased exponents, signed zeros, and NaNs. Readers who are already familiar with floating-point 
processing techniques and the IEEE standards may wish to skip this section.
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31.2.1 Real Number System

As shown in Figure 31-1, the real-number system comprises the continuum of real numbers from 
minus infinity (−∞) to plus infinity (+∞).

Because the size and number of registers that any computer can have is limited, only a subset of the 
real-number continuum can be used in real-number calculations. As shown at the bottom of 
Figure 31-1, the subset of real numbers that a particular FPU supports represents an approximation 
of the real number system. The range and precision of this real-number subset is determined by the 
format that the FPU uses to represent real numbers.

31.2.2 Floating-Point Format

To increase the speed and efficiency of real-number computations, computers or FPUs typically 
represent real numbers in a binary floating-point format. In this format, a real number has three 
parts: a sign, a significand, and an exponent. Figure 31-2 shows the binary floating-point format 
that the Intel Architecture FPU uses. This format conforms to the IEEE standard.

The sign is a binary value that indicates whether the number is positive (0) or negative (1). The 
significand has two parts: a 1-bit binary integer (also referred to as the J-bit) and a binary 
fraction. The J-bit is often not represented, but instead is an implied value. The exponent is a binary 
integer that represents the base-2 power that the significand is raised to.

Figure 31-1. Binary Real Number System

Binary Real Number System

Subset of binary real-numbers that can be represented with
IEEE single-precision (32-bit) floating-point format
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10.0000000000000000000000

1.11111111111111111111111
Precision 24 Binary Digits

Numbers within this range
cannot be represented.
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Table 7-1 shows how the real number 178.125 (in ordinary decimal format) is stored in floating-
point format. The table lists a progression of real number notations that leads to the single-real, 32-
bit floating-point format (which is one of the floating-point formats that the FPU supports). In this 
format, the significand is normalized (see “Normalized Numbers”) and the exponent is biased (see 
“Biased Exponent”). For the single-real format, the biasing constant is +127.

31.2.2.1 Normalized Numbers

In most cases, the FPU represents real numbers in normalized form. This means that except for 
zero, the significand is always made up of an integer of 1 and the following fraction:

• 1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the 
exponent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can be 
accommodated in a significand of a given width. To summarize, a normalized real number consists 
of a normalized significand that represents a real number between 1 and 2 and an exponent that 
specifies the number’s binary point.

31.2.2.2 Biased Exponent

The FPU represents exponents in a biased form. This means that a constant is added to the actual 
exponent so that the biased exponent is always a positive number. The value of the biasing constant 
depends on the number of bits available for representing exponents in the floating-point format 
being used. The biasing constant is chosen so that the smallest normalized number can be 
reciprocated without overflow.

Figure 31-2. Binary Floating-Point Format

Sign

Integer or J-Bit

Exponent Significand

Fraction

Table 31-1. Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E102

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)  1.0110010001E210000110

Single-Real Format

Sign Biased Exponent Normalized Significand

0 10000110
  01100100010000000000000

     1. (Implied)
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(See “Real Numbers” for a list of the biasing constants that the FPU uses for the various sizes of 
real data-types.)

31.2.3 Real Number and Non-number Encodings

A variety of real numbers and special values can be encoded in the FPU’s floating-point format. 
These numbers and values are generally divided into the following classes:

• Signed zeros.

• Denormalized finite numbers.

• Normalized finite numbers.

• Signed infinities.

• NaNs.

• Indefinite numbers.

(The term NaN stands for “Not a Number.”)

Figure 31-3 shows how the encodings for these numbers and non-numbers fit into the real number 
continuum. The encodings shown here are for the IEEE single-precision (32-bit) format, where the 
term “S” indicates the sign bit, “E” the biased exponent, and “F” the fraction. (The exponent values 
are given in decimal.)

The FPU can operate on and/or return any of these values, depending on the type of computation 
being performed. The following sections describe these number and non-number classes.

31.2.3.1 Signed Zeros

Zero can be represented as a +0 or a −0 depending on the sign bit. Both encodings are equal in 
value. The sign of a zero result depends on the operation being performed and the rounding mode 
being used. Signed zeros have been provided to aid in implementing interval arithmetic. The sign 
of a zero may indicate the direction from which underflow occurred, or it may indicate the sign of 
an ∞ that has been reciprocated.

31.2.3.2 Normalized and Denormalized Finite Numbers

Non-zero, finite numbers are divided into two classes: normalized and denormalized. The 
normalized finite numbers comprise all the non-zero finite values that can be encoded in a 
normalized real number format between zero and ∞. In the single-real format shown in 
Figure 31-3, this group of numbers includes all the numbers with biased exponents ranging from 1 
to 25410 (unbiased, the exponent range is from −12610 to +12710).
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When real numbers become very close to zero, the normalized-number format can no longer be 
used to represent the numbers. This is because the range of the exponent is not large enough to 
compensate for shifting the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the integer 
bit (and perhaps other leading bits) of the significand zero. The numbers in this range are called 
denormalized (or tiny) numbers. The use of leading zeros with denormalized numbers allows 
smaller numbers to be represented. However, this denormalization causes a loss of precision (the 
number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, an FPU normally operates on 
normalized numbers and produces normalized numbers as results. Denormalized numbers 
represent an underflow condition.

A denormalized number is computed through a technique called gradual underflow. Table 31-2 
gives an example of gradual underflow in the denormalization process. Here the single-real format 
is being used, so the minimum exponent (unbiased) is −12610. The true result in this example 
requires an exponent of −12910 in order to have a normalized number.   Since  −12910 is beyond the 
allowable exponent range, the result is denormalized by inserting leading zeros until the minimum 
exponent of −12610 is reached.

Figure 31-3. Real Numbers and NaNs

1 0 0
S E F

−0

1 0 −Denormalized
Finite

NaN

1 1...254 Any Value −Normalized
Finite

1 255 0 −∞

255 1.0XX2 −SNaN

255 1.1XX −QNaN

NOTES:
1. Sign bit ignored.
2. Fractions must be non-zero.

0 0 0
S E F

0 0

NaN

0 1...254 Any Value

0 255 0

X1 255 1.0XX2

255 1.1XX

+0

+Denormalized
Finite

+Normalized
Finite

+∞

+SNaN

+QNaN X1

X1

X1

Real Number and NaN Encodings For 32-Bit Floating-Point Format

−Denormalized Finite

−Normalized Finite −0−∞ +∞
+Denormalized Finite

+Normalized Finite+0

0.XXX2 0.XXX2

Table 31-2. Denormalization Process

Operation Sign Exponent* Significand

True Result 0 −129 1.01011100000...00

Denormalize 0 −128 0.10101110000...00

Denormalize 0 −127 0.01010111000...00

Denormalize 0 −126 0.00101011100...00

Denormal Result 0 −126 0.00101011100...00
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NOTE: * Expressed as an unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating a 
zero result.

The FPU deals with denormal values in the following ways:

• It avoids creating denormals by normalizing numbers whenever possible.

• It provides the floating-point underflow exception to permit programmers to detect cases when 
denormals are created.

• It provides the floating-point denormal-operand exception to permit procedures or programs to 
detect when denormals are being used as source operands for computations.

When a denormal number in single- or double-real format is used as a source operand and the 
denormal exception is masked, the FPU automatically normalizes the number when it is converted 
to extended-real format.

31.2.3.3 Signed Infinities

The two infinities, +∞ and −∞, represent the maximum positive and negative real numbers, 
respectively, that can be represented in the floating-point format. Infinity is always represented by a 
zero significand (fraction and integer bit) and the maximum biased exponent allowed in the 
specified format (for example, 25510 for the single-real format).

The signs of infinities are observed, and comparisons are possible. Infinities are always interpreted 
in the affine sense; that is, –∞ is less than any finite number and +∞ is greater than any finite 
number. Arithmetic on infinities is always exact. Exceptions are generated only when the use of an 
infinity as a source operand constitutes an invalid operation.

Whereas denormalized numbers represent an underflow condition, the two infinity numbers 
represent the result of an overflow condition. Here, the normalized result of a computation has a 
biased exponent greater than the largest allowable exponent for the selected result format.

31.2.3.4 NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 31-3, the 
encoding space for NaNs in the FPU floating-point formats is shown above the ends of the real 
number line. This space includes any value with the maximum allowable biased exponent and a 
non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two classes of NaN: quiet NaNs (QNaNs) and signaling NaNs (SNaNs). 
A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN with the most 
significant fraction bit clear. QNaNs are allowed to propagate through most arithmetic operations 
without signaling an exception. SNaNs generally signal an invalid-operation exception whenever 
they appear as operands in arithmetic operations. Exceptions are discussed in “Floating-Point 
Exception Handling”.

See “Operating on NaNs”, for detailed information on how the FPU handles NaNs.
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31.2.4 Indefinite

For each FPU data type, one unique encoding is reserved for representing the special value 
indefinite. For example, when operating on real values, the real indefinite value is a QNaN (see 
“Real Numbers”). The FPU produces indefinite values as responses to masked floating-point 
exceptions.

31.3 FPU Architecture

From an abstract, architectural view, the FPU is a coprocessor that operates in parallel with the 
processor’s integer unit (see Figure 31-4). The FPU gets its instructions from the same instruction 
decoder and sequencer as the integer unit and shares the system bus with the integer unit. Other 
than these connections, the integer unit and FPU operate independently and in parallel. (The actual 
microarchitecture of an Intel Architecture processor varies among the various families of 
processors. For example, the Pentium Pro processor has two integer units and two FPUs; whereas, 
the Pentium processor has two integer units and one FPU, and the Intel486 processor has one 
integer unit and one FPU.)

The instruction execution environment of the FPU (see Figure 31-5) consists of 8 data registers 
(called the FPU data registers) and the following special-purpose registers: 

• The status register.

• The control register.

• The tag word register.

• Instruction pointer register.

• Last operand (data pointer) register.

• Opcode register.

These registers are described in the following sections.

31.3.1 The FPU Data Registers

The FPU data registers (shown in Figure 31-5) consist of eight 80-bit registers. Values are stored in 
these registers in the extended-real format shown in Figure 31-17. When real, integer, or packed 
BCD integer values (in any of the formats shown in Figure 31-17) are loaded from memory into 
any of the FPU data registers, the values are automatically converted into extended-real format (if 

Figure 31-4. Relationship Between the Integer Unit and the FPU

Instruction

Data Bus

Decoder and
Sequencer

FPUInteger
Unit
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they are not already in that format). When computation results are subsequently transferred back 
into memory from any of the FPU registers, the results can be left in the extended-real format or 
converted back into one of the other FPU formats (real, integer, or packed BCD integers) shown in 
Figure 31-17.

The FPU instructions treat the eight FPU data registers as a register stack (see Figure 31-6). All 
addressing of the data registers is relative to the register on the top of the stack. The register 
number of the current top-of-stack register is stored in the TOP (stack TOP) field in the FPU status 
word. Load operations decrement TOP by one and load a value into the new top-of-stack register, 
and store operations store the value from the current TOP register in memory and then increment 
TOP by one. (For the FPU, a load operation is equivalent to a push and a store operation is 
equivalent to a pop.)

If a load operation is performed when TOP is at 0, register wraparound occurs and the new value of 
TOP is set to 7. The floating-point stack-overflow exception indicates when wraparound might 
cause an unsaved value to be overwritten (see “Stack Overflow or Underflow Exception (#IS)”).

Figure 31-5. FPU Execution Environment
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Figure 31-6. FPU Data Register Stack
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Many floating-point instructions have several addressing modes that permit the programmer to 
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative to the 
TOP. Assemblers supports these register addressing modes, using the expression ST(0), or simply 
ST, to represent the current stack top and ST(i) to specify the ith register from TOP in the stack (0 
≤ i ≤ 7). For example, if TOP contains 011B (register 3 is the top of the stack), the following 
instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 31-7 shows an example of how the stack structure of the FPU registers and instructions are 
typically used to perform a series of computations. Here, a two-dimensional dot product is 
computed, as follows:

1. The first instruction (FLD value1) decrements the stack register pointer (TOP) and loads the 
value 5.6 from memory into ST(0). The result of this operation is shown in snap-shot (a). 

2. The second instruction multiplies the value in ST(0) by the value 2.4 from memory and stores 
the result in ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from memory and stores 
the result in ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in ST(0), 
shown in snap-shot (d).

The style of programming demonstrated in this example is supported by the floating-point 
instruction set. In cases where the stack structure causes computation bottlenecks, the FXCH 
(exchange FPU register contents) instruction can be used to streamline a computation.

31.3.1.1 Parameter Passing With the FPU Register Stack

Like the general-purpose registers in the processor’s integer unit, the contents of the FPU data 
registers are unaffected by procedure calls, or in other words, the values are maintained across 
procedure boundaries. A calling procedure can thus use the FPU data registers (as well as the 
procedure stack) for passing parameter between procedures. The called procedure can reference 
parameters passed through the register stack using the current stack register pointer (TOP) and the 
ST(0) and ST(i) nomenclature. It is also common practice for a called procedure to leave a return 
value or result in register ST(0) when returning execution to the calling procedure or program.
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31.3.2 FPU Status Register

The 16-bit FPU status register (see in Figure 31-8) indicates the current state of the FPU. The flags 
in the FPU status register include the FPU busy flag, top-of-stack (TOP) pointer, condition code 
flags, error summary status flag, stack fault flag, and exception flags. The FPU sets the flags in this 
register to show the results of operations. 

The contents of the FPU status register (referred to as the FPU status word) can be stored in 
memory using the FSTSW/FNSTSW, FSTENV/FNSTENV, and FSAVE/FNSAVE instructions. It 
can also be stored in the AX register of the integer unit, using the FSTSW/FNSTSW instructions.

31.3.2.1 Top of Stack (TOP) Pointer

A pointer to the FPU data register that is currently at the top of the FPU register stack is contained 
in bits 11 through 13 of the FPU status word. This pointer, which is commonly referred to as TOP 
(for top-of-stack), is a binary value from 0 to 7. See “The FPU Data Registers”, for more 
information about the TOP pointer.

31.3.2.2 Condition Code Flags

The four FPU condition code flags (C0 through C3) indicate the results of floating-point 
comparison and arithmetic operations. Table 31-3 summarizes the manner in which the floating-
point instructions set the condition code flags. These condition code bits are used principally for 
conditional branching and for storage of information used in exception handling (see “Branching 
and Conditional Moves on FPU Condition Codes”).

Figure 31-7. Example FPU Dot Product Computation

(a)

R7
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R4
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R1

R0

Computation

ST(0)5.6

(b)

R7

R6

R5

R4

R3

R2

R1

R0

ST(0)13.44

(c)

R7

R6

R5

R4

R3

R2

R1
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ST(1)

ST(0)

13.44

(d)

R7

R6

R5

R4

R3

R2

R1

R0

ST(1)

ST(0)39.14

13.44

52.58

Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD  value1 ;(a) value1=5.6
FMUL value2 ;(b) value2=2.4
FLD  value3 ; value3=3.8
FMUL value4 ;(c)value4=10.3
FADD ST(1)  ;(d)
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As shown in Table 31-3, the C1 condition code flag is used for a variety of functions. When both 
the IE and SF flags in the FPU status word are set, indicating a stack overflow or underflow 
exception (#IS), the C1 flag distinguishes between overflow (C1=1) and underflow (C1=0). When 
the PE flag in the status word is set, indicating an inexact (rounded) result, the C1 flag is set to 1 if 
the last rounding by the instruction was upward. The FXAM instruction sets C1 to the sign of the 
value being examined.

The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate an 
incomplete reduction (or partial remainder). When a successful reduction has been completed, the 
C0, C3, and C1 condition code flags are set to the three least-significant bits of the quotient (Q2, 
Q1, and Q0, respectively). See “FPREM1—Partial Remainder” in Chapter 3, Instruction Set 
Reference, of the Intel Architecture Software Developer’s Manual, Volume 2, for more information 
on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate that the 
source operand is beyond the allowable range of ±263.

Where the state of the condition code flags are listed as undefined in Table 31-3, do not rely on any 
specific value in these flags.

Figure 31-8. FPU Status Word
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Table 31-3. FPU Condition Code Interpretation

Instruction C0 C3 C2 C1

FCOM, FCOMP, FCOMPP, 
FICOM, FICOMP, FTST, 
FUCOM, FUCOMP, 
FUCOMPP 

Result of Comparison
Operands 

are not 
Comparable

0 or #IS

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

Undefined. (These instructions set the 
status flags in the EFLAGS register.) #IS

FXAM  Operand class Sign

FPREM, FPREM1 Q2 Q1

0=reduction 
complete

1=reduction 
incomplete

Q0 or #IS
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31.3.2.3 Exception Flags

The six exception flags (bits 0 through 5) of the status word indicate that one or more floating-point 
exceptions has been detected since the bits were last cleared. The individual exception flags (IE, 
DE, ZE, OE, UE, and PE) are described in detail in “Floating-Point Exception Handling”. Each of 
the exception flags can be masked by an exception mask bit in the FPU control word (see “FPU 
Control Word”). The exception summary status (ES) flag (bit 7) is set when any of the unmasked 
exception flags are set. When the ES flag is set, the FPU exception handler is invoked, using one of 
the techniques described in “Software Exception Handling”. (Note that if an exception flag is 
masked, the FPU will still set the flag if its associated exception occurs, but it will not set the ES 
flag.) 

The exception flags are “sticky” bits, meaning that once set, they remain set until explicitly cleared. 
They can be cleared by executing the FCLEX/FNCLEX (clear exceptions) instructions, by 
reinitializing the FPU with the FINIT/FNINIT or FSAVE/FNSAVE instructions, or by overwriting 
the flags with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES flag.

31.3.2.4 Stack Fault Flag

The stack fault flag (bit 6 of the FPU status word) indicates that stack overflow or stack underflow 
has occurred. The FPU explicitly sets the SF flag when it detects a stack overflow or underflow 
condition, but it does not explicitly clear the flag when it detects an invalid-arithmetic-operand 
condition. When this flag is set, the condition code flag C1 indicates the nature of the fault: 

F2XM1, FADD, FADDP, 
FBSTP, FCMOVcc, FIADD, 
FDIV, FDIVP, FDIVR, 
FDIVRP, FIDIV, FIDIVR, 
FIMUL, FIST, FISTP, FISUB, 
FISUBR,FMUL, FMULP, 
FPATAN, FRNDINT, 
FSCALE, FST, FSTP, FSUB, 
FSUBP, FSUBR, 
FSUBRP,FSQRT, FYL2X, 
FYL2XP1

Undefined Roundup or #IS

FCOS, FSIN, FSINCOS, 
FPTAN Undefined

1=source 
operand out of 

range.

Roundup or #IS 
(Undefined if 

C2=1)

FABS, FBLD, FCHS, 
FDECSTP, FILD, FINCSTP, 
FLD, Load Constants, FSTP 
(ext. real), FXCH, FXTRACT 

Undefined 0 or #IS

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW, FCLEX/
FNCLEX, FNOP, FSTCW/
FNSTCW, FSTENV/
FNSTENV, FSTSW/
FNSTSW, 

Undefined

FINIT/FNINIT, FSAVE/
FNSAVE 0 0 0 0

Table 31-3. FPU Condition Code Interpretation

Instruction C0 C3 C2 C1
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overflow (C1 = 1) and underflow (C1 = 0). The SF flag is a “sticky” flag, meaning that after it is 
set, the processor does not clear it until it is explicitly instructed to do so (for example, by an 
FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction). 

See “FPU Tag Word” for more information on FPU stack faults.

31.3.3 Branching and Conditional Moves on FPU Condition Codes

The Intel Architecture FPU (beginning with the Pentium Pro processor) supports two mechanisms 
for branching and performing conditional moves according to comparisons of two floating-point 
values. These mechanism are referred to here as the “old mechanism” and the “new mechanism.” 

The old mechanism is available in FPU’s prior to the Pentium Pro processor and in the Pentium Pro 
processor. This mechanism uses the floating-point compare instructions (FCOM, FCOMP, 
FCOMPP, FTST, FUCOMPP, FICOM, and FICOMP) to compare two floating-point values and set 
the condition code flags (C0 through C3) according to the results. The contents of the condition 
code flags are then copied into the status flags of the EFLAGS register using a two step process 
(see Figure 31-9):

1. The FSTSW AX instruction moves the FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the condition 
code flags, into the lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional jumps or 
conditional moves can be performed based on the new settings of the status flags in the EFLAGS 
register.

The new mechanism is available only in the Pentium Pro processor. Using this mechanism, the new 
floating-point compare and set EFLAGS instructions (FCOMI, FCOMIP, FUCOMI, and 
FUCOMIP) compare two floating-point values and set the ZF, PF, and CF flags in the EFLAGS 
register directly. A single instruction thus replaces the three instructions required by the old 
mechanism.

Figure 31-9. Moving the FPU Condition Codes to the EFLAGS Register
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Note also that the FCMOVcc instructions (also new in the Pentium Pro processor) allow 
conditional moves of floating-point values (values in the FPU data registers) based on the setting of 
the status flags (ZF, PF, and CF) in the EFLAGS register. These instructions eliminate the need for 
an IF statement to perform conditional moves of floating-point values.

31.3.4 FPU Control Word

The 16-bit FPU control word (see in Figure 31-10) controls the precision of the FPU and rounding 
method used. It also contains the exception-flag mask bits. The control word is cached in the FPU 
control register. The contents of this register can be loaded with the FLDCW instruction and stored 
in memory with the FSTCW/FNSTCW instructions.

When the FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction, the 
FPU control word is set to 037FH, which masks all floating-point exceptions, sets rounding to 
nearest, and sets the FPU precision to 64 bits.

31.3.4.1 Exception-Flag Masks

The exception-flag mask bits (bits 0 through 5 of the FPU control word) mask the 6 exception flags 
in the FPU status word (also bits 0 through 5). When one of these mask bits is set, its corresponding 
floating-point exception is blocked from being generated.

31.3.4.2 Precision Control Field

The precision-control (PC) field (bits 8 and 9 of the FPU control word) determines the precision 
(64, 53, or 24 bits) of floating-point calculations made by the FPU (see Table 31-4). The default 
precision is extended precision, which uses the full 64-bit significand available with the extended-
real format of the FPU data registers. This setting is best suited for most applications, because it 
allows applications to take full advantage of the precision of the extended-real format.

Figure 31-10. FPU Control Word
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NOTE: *Includes the implied integer bit.

The double precision and single precision settings, reduce the size of the significand to 53 bits and 
24 bits, respectively. These settings are provided to support the IEEE standard and to allow exact 
replication of calculations which were done using the lower precision data types. Using these 
settings nullifies the advantages of the extended-real format’s 64-bit significand length. When 
reduced precision is specified, the rounding of the significand value clears the unused bits on the 
right to zeros. 

The precision-control bits only affect the results of the following floating-point instructions: 
FADD, FADDP, FSUB, FSUBP, FSUBR, FSUBRP, FMUL, FMULP, FDIV, FDIVP, FDIVR, 
FDIVRP, and FSQRT.

31.3.4.3 Rounding Control Field

The rounding-control (RC) field of the FPU control register (bits 10 and 11) controls how the 
results of floating-point instructions are rounded. Four rounding modes are supported (see 
Table 31-5): round to nearest, round up, round down, and round toward zero. Round to nearest is 
the default rounding mode and is suitable for most applications. It provides the most accurate and 
statistically unbiased estimate of the true result.

The round up and round down modes are termed directed rounding and can be used to implement 
interval arithmetic. Interval arithmetic is used to determine upper and lower bounds for the true 
result of a multistep computation, when the intermediate results of the computation are subject to 
rounding.

The round toward zero mode (sometimes called the “chop” mode) is commonly used when 
performing integer arithmetic with the FPU.

Table 31-4. Precision Control Field (PC)

Precision PC Field

Single Precision (24-Bits*) 00B

Reserved 01B

Double Precision (53-Bits*) 10B

Extended Precision (64-Bits) 11B

Table 31-5. Rounding Control Field (RC)

Rounding 
Mode

RC Field 
Setting Description

Round to 
nearest (even) 00B

Rounded result is the closest to the infinitely precise result. If two values 
are equally close, the result is the even value (that is, the one with the 

least-significant bit of zero).

Round down 
(toward −∞) 01B Rounded result is close to but no greater than the infinitely precise 

result.

Round up 
(toward +∞) 10B Rounded result is close to but no less than the infinitely precise result.

Round toward 
zero (Truncate) 11B Rounded result is close to but no greater in absolute value than the 

infinitely precise result.
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Whenever possible, the FPU produces an infinitely precise result in the destination format (single, 
double, or extended real). However, it is often the case that the infinitely precise result of an 
arithmetic or store operation cannot be encoded exactly in the format of the destination operand.

For example, the following value (a) has a 24-bit fraction. The least-significant bit of this fraction 
(the underlined bit) cannot be encoded exactly in the single-real format (which has only a 23-bit 
fraction):

(a) 1.0001 0000 1000 0011 1001 0111E2 101

To round this result (a), the FPU first selects two representable fractions b and c that most closely 
bracket a in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 011E2 101

(c) 1.0001 0000 1000 0011 1001 100E2 101

The FPU then sets the result to b or to c according to the rounding mode selected in the RC field. 
Rounding introduces an error in a result that is less than one unit in the last place to which the result 
is rounded.

The rounded result is called the inexact result. When the FPU produces an inexact result, the 
floating-point precision (inexact) flag (PE) is set in the FPU status word.

When the overflow exception is masked and the infinitely precise result is between the largest 
positive finite value allowed in a particular format and +∞, the FPU rounds the result as shown in 
Table 31-6.

When the overflow exception is masked and the infinitely precise result is between the largest 
negative finite value allowed in a particular format and −∞, the FPU rounds the result as shown in 
Table 31-7.

Table 31-6. Rounding of Positive Numbers With Masked Overflow

Rounding Mode Result

Rounding to nearest (even) +∞

Rounding toward zero (Truncate) Maximum, positive finite value

Rounding up (toward +∞) +∞

Rounding down) (toward −∞) Maximum, positive finite value
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The rounding modes have no effect on comparison operations, operations that produce exact 
results, or operations that produce NaN results.

31.3.5 Infinity Control Flag

The infinity control flag (bit 12 of the FPU control word) is provided for compatibility with the 
Intel 287 Math Coprocessor; it is not meaningful for the Pentium Pro processor FPU or for the 
Pentium processor FPU, the Intel486 processor FPU, or Intel 387 processor NPX. See “Signed 
Infinities”, for information on how the Intel Architecture FPUs handle infinity values.

31.3.6 FPU Tag Word

The 16-bit tag word (see in Figure 31-11) indicates the contents of each the 8 registers in the FPU 
data-register stack (one 2-bit tag per register). The tag codes indicate whether a register contains a 
valid number, zero, or a special floating-point number (NaN, infinity, denormal, or unsupported 
format), or whether it is empty. The FPU tag word is cached in the FPU in the FPU tag word 
register. When the FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE 
instruction, the FPU tag word is set to FFFFH, which marks all the FPU data registers as empty.

.

Each tag in the FPU tag word corresponds to a physical register (numbers 0 through 7). The current 
top-of-stack (TOP) pointer stored in the FPU status word can be used to associate tags with 
registers relative to ST(0).

The FPU uses the tag values to detect stack overflow and underflow conditions. Stack overflow 
occurs when the TOP pointer is decremented (due to a register load or push operation) to point to a 
non-empty register. Stack underflow occurs when the TOP pointer is incremented (due to a save or 
pop operation) to point to an empty register or when an empty register is also referenced as a 
source operand. A non-empty register is defined as a register containing a zero (01), a valid value 
(00), or an special (10) value.

Table 31-7. Rounding of Negative Numbers With Masked Overflow

Rounding Mode Result

Rounding to nearest (even) -•

Rounding toward zero (Truncate) Maximum, negative finite value

Rounding up (toward +∞) Maximum, negative finite value

Rounding down) (toward −∞) -•

Figure 31-11. FPU Tag Word

015

TAG Values

TAG(7) TAG(5)TAG(6) TAG(4) TAG(3) TAG(2) TAG(1) TAG(0)

00 — Valid
01 — Zero
10 — Special: invalid (NaN, unsupported), infinity, or denormal
11 — Empty
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Application programs and exception handlers can use this tag information to check the contents of 
an FPU data register without performing complex decoding of the actual data in the register. To 
read the tag register, it must be stored in memory using either the FSTENV/FNSTENV or FSAVE/
FNSAVE instructions. The location of the tag word in memory after being saved with one of these 
instructions is shown in Figure 31-13 through 31-16.

Software cannot directly load or modify the tags in the tag register. The FLDENV and FRSTOR 
instructions load an image of the tag register into the FPU; however, the FPU uses those tag values 
only to determine if the data registers are empty (11B) or non-empty (00B, 01B, or 10B). If the tag 
register image indicates that a data register is empty, the tag in the tag register for that data register 
is marked empty (11B); if the tag register image indicates that the data register is non-empty, the 
FPU reads the actual value in the data register and sets the tag for the register accordingly. This 
action prevents a program from setting the values in the tag register to incorrectly represent the 
actual contents of non-empty data registers.

31.3.7 The FPU Instruction and Operand (Data) Pointers

The FPU stores pointers to the instruction and operand (data) for the last non-control instruction 
executed in two 48-bit registers: the FPU instruction pointer and FPU operand (data) pointer 
registers (see Figure 31-5). (This information is saved to provide state information for exception 
handlers.)

The contents of the FPU instruction and operand pointer registers remain unchanged when any of 
the control instructions (FINIT/FNINIT, FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW, FSTSW/
FNSTSW, FSTENV/FNSTENV, FLDENV, FSAVE/FNSAVE, FRSTOR, and WAIT/FWAIT) are 
executed. The contents of the FPU operand register are undefined if the prior non-control 
instruction did not have a memory operand.

The pointers stored in the FPU instruction and operand pointer registers consist of an offset (stored 
in bits 0 through 31) and a segment selector (stored in bits 32 through 47). 

These registers can be accessed by the FSTENV/FNSTENV, FLDENV, FINIT/FNINIT, FSAVE/
FNSAVE and FRSTOR instructions. The FINIT/FNINIT and FSAVE/FNSAVE instructions clear 
these registers.

For all the Intel Architecture FPUs and NPXs except the 8087, the FPU instruction pointer points 
to any prefixes that preceded the instruction. For the 8087, the FPU instruction pointer points only 
to the actual opcode.

31.3.8 Last Instruction Opcode

The FPU stores the opcode of the last non-control instruction executed in an 11-bit FPU opcode 
register. (This information provides state information for exception handlers.) Only the first and 
second opcode bytes (after all prefixes) are stored in the FPU opcode register. Figure 31-12 shows 
the encoding of these two bytes. Since the upper 5 bits of the first opcode byte are the same for all 
floating-point opcodes (11011B), only the lower 3 bits of this byte are stored in the opcode register.

31.3.9 Saving the FPU’s State

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store FPU state information in 
memory for use by exception handlers and other system and application software. The FSTENV/
FNSTENV instruction saves the contents of the status, control, tag, FPU instruction pointer, FPU 
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operand pointer, and opcode registers. The FSAVE/FNSAVE instruction stores that information 
plus the contents of the FPU data registers. Note that the FSAVE/FNSAVE instruction also 
initializes the FPU to default values (just as the FINIT/FNINIT instruction does) after it has saved 
the original state of the FPU.

The manner in which this information is stored in memory depends on the operating mode of the 
processor (protected mode or real-address mode) and on the operand-size attribute in effect (32-bit 
or 16-bit). See Figure 31-13 through 31-16. In virtual-8086 mode or SMM, the real-address mode 
formats shown in Figure 31-16 is used. See “Using the FPU in SMM” in Chapter 11 of the Intel 
Architecture Software Developer’s Manual, Volume 3, for special considerations for using the FPU 
while in SMM.

Figure 31-12. Contents of FPU Opcode Registers
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Figure 31-13. Protected Mode FPU State Image in Memory, 32-Bit Format
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The FLDENV and FRSTOR instructions allow FPU state information to be loaded from memory 
into the FPU. Here, the FLDENV instruction loads only the status, control, tag, FPU instruction 
pointer, FPU operand pointer, and opcode registers, and the FRSTOR instruction loads all the FPU 
registers, including the FPU stack registers. 

Figure 31-14. Real Mode FPU State Image in Memory, 32-Bit Format

Figure 31-15. Protected Mode FPU State Image in Memory, 16-Bit Format

Figure 31-16. Real Mode FPU State Image in Memory, 16-Bit Format
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31.4 Floating-Point Data Types and Formats

The Intel Architecture FPU recognizes and operates on seven data types, divided into three groups: 
reals, integers, and packed BCD integers. Figure 31-17 shows the data formats for each of the FPU 
data types. Table 31-8 gives the length, precision, and approximate normalized range that can be 
represented of each FPU data type. Denormal values are also supported in each of the real types, as 
required by IEEE Std. 854.

With the exception of the 80-bit extended-real format, all of these data types exist in memory only. 
When they are loaded into FPU data registers, they are converted into extended-real format and 
operated on in that format.

When stored in memory, the least significant byte of an FPU data-type value is stored at the initial 
address specified for the value. Successive bytes from the value are then stored in successively 
higher addresses in memory. The floating-point instructions load and store memory operands using 
only the initial address of the operand.

31.4.1 Real Numbers

The FPU’s three real data types (single-real, double-real, and extended-real) correspond directly to 
the single-precision, double-precision, and double-extended-precision formats in the IEEE 
standard. The extended-precision format is the format used by the data registers in the FPU. 
Table 31-8 gives the precision and range of these data types and Figure 31-17 gives the formats. 

Figure 31-17. Floating-Point Unit Data Type Formats
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For the single-real and double-real formats, only the fraction part of the significand is encoded. The 
integer is assumed to be 1 for all numbers except 0 and denormalized finite numbers. For the 
extended-real format, the integer is contained in bit 63, and the most-significant fraction bit is bit 
62. Here, the integer is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to 0 for 
zero and denormalized numbers.

The exponent of each real data type is encoded in biased format. The biasing constant is 127 for the 
single-real format, 1023 for the double-real format, and 16,383 for the extended-real format.

Table 31-9 shows the encodings for all the classes of real numbers (that is, zero, denormalized-
finite, normalized-finite, and ∞) and NaNs for each of the three real data-types. It also gives the 
format for the real indefinite value.

When storing real values in memory, single-real values are stored in 4 consecutive bytes in 
memory; double-real values are stored in 8 consecutive bytes; and extended-real values are stored 
in 10 consecutive bytes.

As a general rule, values should be stored in memory in double-real format. This format provides 
sufficient range and precision to return correct results with a minimum of programmer attention. 
The single-real format is appropriate for applications that are constrained by memory; however, it 
provides less precision and a greater chance of overflow. The single-real format is also useful for 
debugging algorithms, because rounding problems will manifest themselves more quickly in this 
format. The extended-real format is normally reserved for holding intermediate results in the FPU 
registers and constants. Its extra length is designed to shield final results from the effects of 
rounding and overflow/underflow in intermediate calculations. However, when an application 
requires the maximum range and precision of the FPU (for data storage, computations, and results), 
values can be stored in memory in extended-real format.

The real indefinite value is a QNaN encoding that is stored by several floating-point instructions in 
response to a masked floating-point invalid-operation exception (see Table 31-20).

Table 31-8. Length, Precision, and Range of FPU Data Types

Data Type Length Precision
(Bits)

Approximate Normalized Range

Binary Decimal

Binary Real

  Single real 32 24 2–126 to 2127 1.18 × 10–38 to 3.40 × 1038

  Double real 64 53 2–1022 to 21023 2.23 × 10–308 to 1.79 × 10308

  Extended real 80 64 2–16382 to 216383 3.37 × 10–4932 to 1.18 × 104932

Binary Integer

  Word integer 16 15 –215 to 215 – 1 –32,768 to 32,767

  Short integer 32 31 –231 to 231 – 1 –2.14 × 109 to 2.14 × 109

  Long integer 64 63 –263 to 263 – 1 –9.22 × 1018 to 9.22 × 1018

Packed BCD 
Integers 80 18 (decimal

digits) Not Pertinent (–1018 + 1) to (1018 – 1) 
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NOTE: Notes:
1. Integer bit is implied and not stored for single-real and double-real formats.
2. The fraction for SNaN encodings must be non-zero.

31.4.2 Binary Integers

The FPU’s three binary integer data types (word, short, and long) have identical formats, except for 
length. Table 31-8 gives the precision and range of these data types and Figure 31-17 gives the 
formats. Table 31-10 gives the encodings of the three binary integer types.

Table 31-9. Real Number and NaN Encodings

Class Sign Biased Exponent
Significand

Integer1 Fraction

Positive

+∞ 0 11..11 1 00..00

+Normals

0
.
.
0

11..10
    .
    .

00..01

1
.
.
1

11..11
    .
    .

00..00

+Denormals

0
.
.
0

00..00
    .
    .

00..00

0
.
.
0

11.11
    .
    .

00..01

+Zero 0 00..00 0 00..00

Negative

−Zero 1 00..00 0 00..00

−Denormals

1
.
.
1

00..00
    .
    .

00..00

0
.
.
0

00..01
    .
    .

11..11

−Normals

1
.
.
1

00..01
    .
    .

11..10

1
.
.
1

00..00
    .
    .

11..11

-• 1 11..11 1 00..00

NaNs

SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

Real Indefinite 
(QNaN) 1 11..11 1 10..00

Single-Real:
Double-Real:
Extended-Real

← 8 Bits →
← 11 Bits →
← 15 Bits →

← 23 Bits →
← 52 Bits →
← 63 Bits →
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The most significant bit of each format is the sign bit (0 for positive and 1 for negative). Negative 
values are represented in standard two’s complement notation. The quantity zero is represented 
with all bits (including the sign bit) set to zero. Note that the FPU’s word-integer data type is 
identical to the word-integer data type used by the processor’s integer unit and the short-integer 
format is identical to the integer unit’s doubleword-integer data type.

Word-integer values are stored in 2 consecutive bytes in memory; short-integer values are stored in 
4 consecutive bytes; and long-integer values are stored in 8 consecutive bytes. When loaded into 
the FPU’s data registers, all the binary integers are exactly representable in the extended-real 
format.

The binary integer encoding 100..00B represents either of two things, depending on the 
circumstances of its use:

• The largest negative number supported by the format (–215, –231, or –263).

• The integer indefinite value.

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), 
the FPU interprets it as the largest negative number representable in the format being used. If the 
FPU detects an invalid operation when storing an integer value in memory with an FIST/FISTP 
instruction and the invalid-operation exception is masked, the FPU stores the integer indefinite 
encoding in the destination operand as a masked response to the exception. In situations where the 
origin of a value with this encoding may be ambiguous, the invalid-operation exception flag can be 
examined to see if the value was produced as a response to an exception. 

If the integer indefinite is stored in memory and is later loaded back into an FPU data register, it is 
interpreted as the largest negative number supported by the format.

Table 31-10. Binary Integer Encodings

Class Sign Magnitude

Positive

Largest 0 11..11

. .

. .

. .

Smallest 0 00..01

Zero 0 00..00

Negative

Smallest 1 11..11

. .

. .

. .

. .

Largest 1 00..00

Integer Indefinite 1 00..00

Word Integer:
Short Integer:
Long Integer:

← 15 bits →
← 31 Bits →
← 63 Bits →
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31.4.3 Decimal Integers

Decimal integers are stored in a 10-byte, packed BCD format. Table 31-8 gives the precision and 
range of this data type and Figure 31-17 shows the format. In this format, the first 9 bytes hold 18 
BCD digits, 2 digits per byte (see “BCD Integers”). The least-significant digit is contained in the 
lower half-byte of byte 0 and the most-significant digit is contained in the upper half-byte of byte 9. 
The most significant bit of byte 10 contains the sign bit (0 = positive and 1 = negative). (Bits 0 
through 6 of byte 10 are don’t care bits.) Negative decimal integers are not stored in two's 
complement form; they are distinguished from positive decimal integers only by the sign bit.

Table 31-11 gives the possible encodings of value in the decimal integer data type.

The decimal integer format exists in memory only. When a decimal integer is loaded in a data 
register in the FPU, it is automatically converted to the extended-real format. All decimal integers 
are exactly representable in extended-real format.

The packed decimal indefinite encoding is stored by the FBSTP instruction in response to a 
masked floating-point invalid-operation exception. Attempting to load this value with the FBLD 
instruction produces an undefined result.

31.4.4 Unsupported Extended-Real Encodings

The extended-real format permits many encodings that do not fall into any of the categories shown 
in Table 31-9. Table 31-12 shows these unsupported encodings. Some of these encodings were 
supported by the Intel 287 math coprocessor; however, most of them are not supported by the Intel 
387 math coprocessor, or the internal FPUs in the Intel486, Pentium, or Pentium Pro processors. 
These encodings are no longer supported due to changes made in the final version of IEEE Std. 754 
that eliminated these encodings.

The categories of encodings formerly known as pseudo-NaNs, pseudo-infinities, and un-normal 
numbers are not supported. The Intel 387 math coprocessor and the internal FPUs in the Intel486, 
Pentium, and Pentium Pro processors generate the invalid-operation exception when they are 
encountered as operands.

The encodings formerly known as pseudo-denormal numbers are not generated by the Intel 387 
math coprocessor and the internal FPUs in the Intel486, Pentium, and Pentium Pro processors; 
however, they are used correctly when encountered as operands. The exponent is treated as if it 
were 00..01B and the mantissa is unchanged. The denormal exception is generated.

Table 31-11. Packed Decimal Integer Encodings  (Sheet 1 of 2)

Class Sign
Magnitude

digit digit digit digit ... digit

Positive

  Largest 0 0000000 1001 1001 1001 1001 ... 1001

. . .

. . .

  
Smallest 0 0000000 0000 0000 0000 0000 ... 0001

  Zero 0 0000000 0000 0000 0000 0000 ... 0000
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NOTE: * UUUU means bit values are undefined and may contain any value.

31.5 FPU Instruction Set

The floating-point instructions that the Intel Architecture FPU supports can be grouped into six 
functional categories:

• Data transfer instructions

• Basic arithmetic instructions

• Comparison instructions

• Transcendental instructions

• Load constant instructions

• FPU control instructions

The following section briefly describes the instructions in each category. Detailed descriptions of 
the floating-point instructions are given in “Instruction Page Key”. 

Negative

  Zero 1 0000000 0000 0000 0000 0000 ... 0000

  
Smallest 1 0000000 0000 0000 0000 0000 ... 0001

. . .

. . .

  Largest 1 0000000 1001 1001 1001 1001 ... 1001

Decimal 
Integer 
Indefinite

1 1111111 1111 1111 UUUU* UUUU ... UUUU

← 1 byte → ← 9 bytes →

Table 31-11. Packed Decimal Integer Encodings  (Sheet 2 of 2)

Class Sign
Magnitude

digit digit digit digit ... digit

Table 31-12. Unsupported Extended-Real Encodings  (Sheet 1 of 2)

Class Sign Biased Exponent
Significand

Integer Fraction

Positive 
Pseudo-NaNs

Quiet

0
.
0

11..11
.

11..11
0

11..11
.

10..00

Signaling

0
.
0

11..11
.

11..11
0

 01..11
.

00..01
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31.5.1 Escape (ESC) Instructions

All of the instructions in the FPU instruction set fall into a class of instructions known as escape 
(ESC) instructions. All of these instructions have a common opcode format, which is slightly 
different from the format used by the integer and operating-system instructions.

31.5.2 FPU Instruction Operands

Most floating-point instructions require one or two operands, which are located on the FPU data-
register stack or in memory. (None of the floating-point instructions accept immediate operands.) 

When an operand is located in a data register, it is referenced relative to the ST(0) register (the 
register at the top of the register stack), rather than by a physical register number. Often the ST(0) 
register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods available for 
the integer and system instructions.

31.5.3 Data Transfer Instructions

The data transfer instructions (see Table 31-13) perform the following operations:

• Load real, integer, or packed BCD operands from memory into the ST(0) register.

• Store the value in the ST(0) register in memory in real, integer, or packed BCD format.

Positive Reals

Pseudo-infinity 0 11..11 0 00..00

Unnormals

0
.
0

11..10
.

00..01
0

11..11
.

00..00

Pseudo-denormals
0
.
0

00..00
.

00..00
1

11..11
.

00..00

Negative Reals

Pseudo-denormals
1
.
1

00..00
.

00..00
1

11..11
.

00..00

Unnormals

1
.
1

11..10
.

00..01
0

11..01
.

00..00

Pseudo-infinity 1 11..11 0 00..00

Negative 
Pseudo-NaNs Signaling

1
.
1

11..11
.

11..11
0

01..11
.

00..01

Quiet

1
.
1

11..11
.

11..11
0

11..11
.

10..00

← 15 bits → ← 63 bits →

Table 31-12. Unsupported Extended-Real Encodings  (Sheet 2 of 2)

Class Sign Biased Exponent
Significand

Integer Fraction
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• Move values between registers in the FPU register stack.

Operands are normally stored in the FPU data registers in extended-real format (see “Precision 
Control Field”). The FLD (load real) instruction pushes a real operand from memory onto the top 
of the FPU data-register stack. If the operand is in single- or double-real format, it is automatically 
converted to extended-real format. This instruction can also be used to push the value in a selected 
FPU data register onto the top of the register stack.

The FILD (load integer) instruction converts an integer operand in memory into extended-real 
format and pushes the value onto the top of the register stack. The FBLD (load packed decimal) 
instruction performs the same load operation for a packed BCD operand in memory.

The FST (store real) and FIST (store integer) instructions store the value in register ST(0) in 
memory in the destination format (real or integer, respectively). Again, the format conversion is 
carried out automatically.

The FSTP (store real and pop), FISTP (store integer and pop), and FBSTP (store packed decimal 
and pop) instructions store the value in the ST(0) registers into memory in the destination format 
(real, integer, or packed BCD), then performs a pop operation on the register stack. A pop 
operation causes the ST(0) register to be marked empty and the stack pointer (TOP) in the FPU 
control work to be incremented by 1. The FSTP instruction can also be used to copy the value in 
the ST(0) register to another FPU register [ST(i)].

The FXCH (exchange register contents) instruction exchanges the value in a selected register in the 
stack [ST(i)] with the value in ST(0).

The FCMOVcc (conditional move) instructions move the value in a selected register in the stack 
[ST(i)] to register ST(0). These instructions move the value only if the conditions specified with a 
condition code (cc) are satisfied (see Table 31-14). The conditions being tested with the FCMOVcc 
instructions are represented by the status flags in the EFLAGS register. The condition code 
mnemonics are appended to the letters “FCMOV” to form the mnemonic for a FCMOVcc 
instruction.

Table 31-13. Data Transfer Instructions

Real Integer Packed Decimal

FLD Load Real FILD Load Integer FBLD Load Packed
Decimal

FST Store Real FIST Store Integer

FSTP Store Real and
Pop FISTP Store Integer

and Pop FBSTP Store Packed
Decimal and Pop

FXCH Exchange Register 
Contents

FCMOVcc Conditional Move

Table 31-14. Floating-Point Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

FCMOVB CF=1 Below

FCMOVNB CF=0 Not below

FCMOVE ZF=1 Equal

FCMOVNE ZF=0 Not equal
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Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing small IF 
constructions. They also help eliminate branching overhead for IF operations and the possibility of 
branch mispredictions by the processor. 

Note: The FCMOVcc instructions may not be supported on some processors in the Pentium Pro 
processor family. Software can check if the FCMOVcc instructions are supported by checking the 
processor’s feature information with the CPUID instruction (see “CPUID—CPU Identification” in 
Chapter 3 of the Intel Architecture Software Developer’s Manual, Volume 2).

31.5.4 Load Constant Instructions

The following instructions push commonly used constants onto the top [ST(0)] of the FPU register 
stack:

The constant values have full extended-real precision (64 bits) and are accurate to approximately 
19 decimal digits. They are stored internally in a format more precise than extended real. When 
loading the constant, the FPU rounds the more precise internal constant according to the RC 
(rounding control) field of the FPU control word. See “Pi”, for information on the π constant.

31.5.5 Basic Arithmetic Instructions

The following floating-point instructions perform basic arithmetic operations on real numbers. 
Where applicable, these instructions match IEEE Standard 754:

FCMOVBE (CF or ZF)=1 Below or equal

FCMOVNBE (CF or ZF)=0 Not below nor equal

FCMOVU PF=1 Unordered

FCMOVNU PF=0 Not unordered

Table 31-14. Floating-Point Conditional Move Instructions

FLDZ Load +0.0

FLD1 Load +1.0

FLDPI Load π

FLDL2T Load log2 10

FLDL2E Load log2e

FLDLG2 Load log102

FLDLN2 Load loge2

FADD/FADDP Add real

FIADD Add integer to real

FSUB/FSUBP Subtract real

FISUB Subtract integer from real

FSUBR/FSUBRP Reverse subtract real

FISUBR Reverse subtract real from integer

FMUL/FMULP Multiply real
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The add, subtract, multiply and divide instructions operate on the following types of operands:

• Two FPU register values.

• A register value and a real or integer value in memory.

Operands in memory can be in single-real, double-real, short-integer, or word-integer format. They 
are converted to extended-real format automatically.

Reverse versions of the subtract and divide instructions are provided to foster efficient coding. For 
example, the FSUB instruction subtracts the value in a specified FPU register [ST(i)] from the 
value in register ST(0); whereas, the FSUBR instruction subtracts the value in ST(0) from the value 
in ST(i). The results of both operations are stored in register ST(0). These instructions eliminate the 
need to exchange values between register ST(0) and another FPU register to perform a subtraction 
or division.

The pop versions of the add, subtract, multiply and divide instructions pop the FPU register stack 
following the arithmetic operation.

The FPREM instruction computes the remainder from the division of two operands in the manner 
used by the Intel 8087 and Intel 287 math coprocessors; the FPREM1 instructions computes the 
remainder is the manner specified in the IEEE specification.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instructions rounds a real value to its nearest integer value, according to the current 
rounding mode specified in the RC field of the FPU control word. This instruction performs a 
function similar to the FIST/FISTP instructions, except that the result is saved in a real format.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic operations. The 
FABS instruction produces the absolute value of the source operand. The FCHS instruction 
changes the sign of the source operand. The FXTRACT instruction separates the source operand 
into its exponent and fraction and stores each value in a register in real format.

FIMUL Multiply integer by real

FDIV/FDIVP Divide real

FIDIV Divide real by integer

FDIVR/FDIVRP Reverse divide

FIDIVR Reverse divide integer by real

FABS Absolute value

FCHS Change sign

FSQRT Square root

FPREM Partial remainder

FPREM1 IEEE partial remainder

FRNDINT Round to integral value

FXTRACT Extract exponent and significand
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31.5.6 Comparison and Classification Instructions

The following instructions compare or classify real values:

Comparison of real values differ from comparison of integers because real values have four (rather 
than three) mutually exclusive relationships: less than, equal, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a NaN or 
in an undefined format. This additional relationship is required because, by definition, NaNs are 
not numbers, so they cannot have less than, equal, or greater than relationships with other real 
values.

The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with a real 
source operand and set the condition code flags (C0, C2, and C3) in the FPU status word according 
to the results (see Table 31-15). If an unordered condition is detected (one or both of the values is a 
NaN or in an undefined format), a floating-point invalid-operation exception is generated.

The pop versions of the instruction pop the FPU register stack once or twice after the comparison 
operation is complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, FCOMP, 
and FCOMPP instructions. The only difference is that with the FUCOM, FUCOMP, and 
FUCOMPP instructions, if an unordered condition is detected because one or both of the operands 
is a QNaN, the floating-point invalid-operation exception is not generated.

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP 
instructions, except that the source operand is an integer value in memory. The integer value is 
automatically converted into an extended real value prior to making the comparison. The FICOMP 
instruction pops the FPU register stack following the comparison operation.

The FTST instruction performs the same operation as the FCOM instruction, except that the value 
in register ST(0) is always compared with the value 0.0.

FCOM/FCOMP/FCOMPP Compare real and set FPU condition code flags.

FUCOM/FUCOMP/FUCOMPP Unordered compare real and set FPU condition code 
flags.

FICOM/FICOMP Compare integer and set FPU condition code flags.

FCOMI/FCOMIP Compare real and set EFLAGS status flags.

FUCOMI/FUCOMIP Unordered compare real and set EFLAGS status 
flags.

FTST Test (compare real with 0.0).

FXAM Examine.

Table 31-15. Setting of FPU Condition Code Flags for Real Number Comparisons

Condition C3 C2 C0

ST(0) > Source Operand 0 0 0

ST(0) < Source Operand 0 0 1

ST(0) = Source Operand 1 0 0

Unordered 1 1 1
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The FCOMI and FCOMIP instructions are new in the Intel Pentium Pro processor. They perform 
the same comparison as the FCOM and FCOMP instructions, except that they set the status flags 
(ZF, PF, and CF) in the EFLAGS register to indicate the results of the comparison (see 
Table 31-16) instead of the FPU condition code flags. The FCOMI and FCOMIP instructions allow 
condition branch instructions (Jcc) to be executed directly from the results of their comparison.

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP 
instructions, except that they do not generate a floating-point invalid-operation exception if the 
unordered condition is the result of one or both of the operands being a QNaN. The FCOMIP and 
FUCOMIP instructions pop the FPU register stack following the comparison operation.

The FXAM instruction determines the classification of the real value in the ST(0) register (that is, 
whether the value is zero, a denormal number, a normal finite number, ∞, a NaN, or an unsupported 
format) or that the register is empty. It sets the FPU condition code flags to indicate the 
classification (see “FXAM—Examine” in Chapter 3, Instruction Set Reference, of the Intel 
Architecture Software Developer’s Manual, Volume 2). It also sets the C1 flag to indicate the sign 
of the value.

31.5.6.1 Branching on the FPU Condition Codes

The processor does not offer any control-flow instructions that branch on the setting of the 
condition code flags (C0, C2, and C3) in the FPU status word. To branch on the state of these flags, 
the FPU status word must first be moved to the AX register in the integer unit. The FSTSW AX 
(store status word) instruction can be used for this purpose. When these flags are in the AX register, 
the TEST instruction can be used to control conditional branching as follows:

1. Check for an unordered result. Use the TEST instruction to compare the contents of the AX 
register with the constant 0400H (see Table 31-17). This operation will clear the ZF flag in the 
EFLAGS register if the condition code flags indicate an unordered result; otherwise, the ZF 
flag will be set. The JNZ instruction can then be used to transfer control (if necessary) to a 
procedure for handling unordered operands.

2. Check ordered comparison result. Use the constants given in Table 31-17 in the TEST 
instruction to test for a less than, equal to, or greater than result, then use the corresponding 
conditional branch instruction to transfer program control to the appropriate procedure or 
section of code.

Table 31-16. Setting of EFLAGS Status Flags for Real Number Comparisons

Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1

Table 31-17. TEST Instruction Constants for Conditional Branching

Order Constant Branch

ST(0) > Source Operand 4500H JZ

ST(0) < Source Operand 0100H JNZ

ST(0) = Source Operand 4000H JNZ

Unordered 0400H JNZ
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If a program or procedure has been thoroughly tested and it incorporates periodic checks for QNaN 
results, then it is not necessary to check for the unordered result every time a comparison is made.

See “Branching and Conditional Moves on FPU Condition Codes”, for another technique for 
branching on FPU condition codes.

Some non-comparison FPU instructions update the condition code flags in the FPU status word. To 
ensure that the status word is not altered inadvertently, store it immediately following a comparison 
operation.

31.5.7 Trigonometric Instructions

The following instructions perform four common trigonometric functions:

These instructions operate on the top one or two registers of the FPU register stack and they return 
their results to the stack. The source operands must be given in radians.

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It 
operates faster than executing the FSIN and FCOS instructions in succession.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0). It is useful for 
converting rectangular coordinates to polar coordinates.

31.5.8 Pi

When the argument (source operand) of a trigonometric function is within the range of the 
function, the argument is automatically reduced by the appropriate multiple of 2π through the same 
reduction mechanism used by the FPREM and FPREM1 instructions. The internal value of π that 
the Intel Architecture FPU uses for argument reduction and other computations is as follows:

π = 0.f ∗ 22

where:

f = C90FDAA2  2168C234  C

(The spaces in the fraction above indicate 32-bit boundaries.)

This internal π value has a 66-bit mantissa, which is 2 bits more than is allowed in the significand 
of an extended-real value. (Since 66 bits is not an even number of hexadecimal digits, two 
additional zeros have been added to the value so that it can be represented in hexadecimal 
format. The least-significant hexadecimal digit (C) is thus 1100B, where the two least-
significant bits represent bits 67 and 68 of the mantissa.)

FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine

FPTAN Tangent

FPATAN Arctangent
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This value of π has been chosen to guarantee no loss of significance in a source operand, provided 
the operand is within the specified range for the instruction.

If the results of computations that explicitly use π are to be used in the FSIN, FCOS, FSINCOS, or 
FPTAN instructions, the full 66-bit fraction of π should be used. This insures that the results are 
consistent with the argument-reduction algorithms that these instructions use. Using a rounded 
version of π can cause inaccuracies in result values, which if propagated through several 
calculations, might result in meaningless results.

A common method of representing the full 66-bit fraction of π is to separate the value into two 
numbers (highπ and lowπ) that when added together give the value for π shown earlier in this 
section with the full 66-bit fraction:

π = highπ + lowπ

For example, the following two values (given in scientific notation with the fraction in 
hexadecimal and the exponent in decimal) represent the 33 most-significant and the 33 least-
significant bits of the fraction:

highπ (unnormalized)= 0.C90FDAA20 * 2+2 

lowπ (unnormalized)= 0.42D184698 * 2−31

These values encoded in standard IEEE double-real format are as follows:

highπ = 400921FB  54400000

lowπ  = 3DE0B461  1A600000

(Note that in the IEEE double-real format, the exponents are biased (by 1023) and the fractions are 
normalized.)

Similar versions of π can also be written in extended-real format.

When using this two-part π value in an algorithm, parallel computations should be performed on 
each part, with the results kept separate. When all the computations are complete, the two results 
can be added together to form the final result.

The complications of maintaining a consistent value of π for argument reduction can be avoided, 
either by applying the trigonometric functions only to arguments within the range of the automatic 
reduction mechanism, or by performing all argument reductions (down to a magnitude less than π/
4) explicitly in software.

31.5.9 Logarithmic, Exponential, and Scale

The following instructions provide two different logarithmic functions, an exponential function, 
and a scale function.

FYL2X Compute log (y ∗ log2x)

FYL2XP1 Compute log epsilon (y ∗ log2(x + 1))

F2XM1 Compute exponential (2x – 1)

FSCALE Scale
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The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic operations. The 
FYL2X instruction computes the log of (y ∗ log2x). This operation permits the calculation of the 
log of any base using the following equation:

logb x = (1/log2 b) ∗ log2 x

The FYL2XP1 instruction computes the log epsilon of (y ∗ log2  (x + 1)). This operation provides 
optimum accuracy for values of epsilon (ε) that are close to 0.

The F2XM1 instruction computes the exponential (2x − 1). This instruction only operates on source 
values in the range −1.0 to +1.0.

The FSCALE instruction multiplies the source operand by a power of 2.

31.5.10 Transcendental Instruction Accuracy

The algorithms that the Pentium and Pentium Pro processors use for the transcendental instructions 
(FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1) allow a higher 
level of accuracy than was possible in earlier Intel Architecture math coprocessors and FPUs. The 
accuracy of these instructions is measured in terms of units in the last place (ulp). For a given 
argument x, let f(x) and F(x) be the correct and computed (approximate) function values, 
respectively. The error in ulps is defined to be:

where k is an integer such that . 

With the Pentium and Pentium Pro processors, the worst case error on transcendental functions 
is less than 1 ulp when rounding to the nearest-even and less than 1.5 ulps when rounding in other 
modes. The functions are guaranteed to be monotonic, with respect to the input operands, 
throughout the domain supported by the instruction.

With the Intel486 processor and Intel 387 math coprocessor, the worst-case, transcendental-
function error is typically 3 or 3.5 ulps, but is sometimes as large as 4.5 ulps.

31.5.11 FPU Control Instructions

The following instructions control the state and modes of operation of the FPU. They also allow the 
status of the FPU to be examined:

FINIT/FNINITInitialize FPU
FLDCWLoad FPU control word
FSTCW/FNSTCWStore FPU control word
FSTSW/FNSTSWStore FPU status word
FCLEX/FNCLEXClear FPU exception flags
FLDENVLoad FPU environment
FSTENV/FNSTENVStore FPU environment
FRSTORRestore FPU state
FSAVE/FNSAVESave FPU state
FINCSTPIncrement FPU register stack pointer

error f x( ) F x( )–

2
k 63–

---------------------------=

1 2
k–
f x( ) 2<≤
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FDECSTPDecrement FPU register stack pointer
FFREE Free FPU register
FNOP No operation
WAIT/FWAITCheck for and handle pending unmasked FPU exceptions

The FINIT/FNINIT instructions initialize the FPU and its internal registers to default values.

The FLDCW instructions loads the FPU control word register with a value from memory. The 
FSTCW/FNSTCW and FSTSW/FNSTSW instructions store the FPU control and status words, 
respectively, in memory (or for an FSTSW/FNSTSW instruction in a general-purpose register).

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions save the FPU environment and state, 
respectively, in memory. The FPU environment includes all the FPU’s control and status registers; 
the FPU state includes the FPU environment and the data registers in the FPU register stack. (The 
FSAVE/FNSAVE instruction also initializes the FPU to default values, like the FINIT/FNINIT 
instruction, after it saves the original state of the FPU.) 

The FLDENV and FRSTOR instructions load the FPU environment and state, respectively, from 
memory into the FPU. These instructions are commonly used when switching tasks or contexts.

The WAIT/FWAIT instructions are synchronization instructions. (They are actually mnemonics for 
the same opcode.) These instructions check the FPU status word for pending unmasked FPU 
exceptions. If any pending unmasked FPU exceptions are found, they are handled before the 
processor resumes execution of the instructions (integer, floating-point, or system instruction) in 
the instruction stream. The WAIT/FWAIT instructions are provided to allow synchronization of 
instruction execution between the FPU and the processor’s integer unit. See “Floating-Point 
Exception Synchronization” for more information on the use of the WAIT/FWAIT instructions.

31.5.12 Waiting Vs. Non-waiting Instructions

All of the floating-point instructions except a few special control instructions perform a wait 
operation (similar to the WAIT/FWAIT instructions), to check for and handle pending unmasked 
FPU exceptions, before they perform their primary operation (such as adding two real numbers). 
These instructions are called waiting instructions. Some of the FPU control instructions, such as 
FSTSW/FNSTSW, have both a waiting and a non-waiting versions. The waiting version (with the 
“F” prefix) executes a wait operation before it performs its primary operation; whereas, the non-
waiting version (with the “FN” prefix) ignores pending unmasked exceptions. Non-waiting 
instructions allow software to save the current FPU state without first handling pending exceptions 
or to reset or reinitialize the FPU without regard for pending exceptions.

Note: When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible 
(under unusual circumstances) for a non-waiting instruction to be interrupted prior to being 
executed to handle a pending FPU exception. The circumstances where this can happen and the 
resulting action of the processor are described in “No-Wait FPU Instructions Can Get FPU 
Interrupt in Window”. When operating a Pentium Pro processor in MS-DOS compatibility mode, 
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non-waiting instructions can not be interrupted in this way (see “MS-DOS* Compatibility Mode in 
the Pentium® Pro Processor”).

31.5.13 Unsupported FPU Instructions

The Intel 8087 instructions FENI and FDISI and the Intel 287 math coprocessor instruction 
FSETPM perform no function in the Intel 387 math coprocessor, or the Intel486, Pentium, or 
Pentium Pro processors. If these opcodes are detected in the instruction stream, the FPU performs 
no specific operation and no internal FPU states are affected.

31.6 Operating on NaNs

As was described in “NaNs”, the FPU supports two types of NaNs: SNaNs and QNaNs. An SNaN 
is any NaN value with its most-significant fraction bit set to 0 and at least one other fraction bit set 
to 1. (If all the fraction bits are set to 0, the value is an ∞.) A QNaN is any NaN value with the 
most-significant fraction bit set to 1. The sign bit of a NaN is not interpreted.

As a general rule, when a QNaN is used in one or more arithmetic floating-point instructions, it is 
allowed to propagate through a computation. An SNaN on the other hand causes a floating-point 
invalid-operation exception to be signaled. SNaNs are typically used to trap or invoke an exception 
handler. They must be inserted by software; that is, the FPU never generates an SNaN as a result.

The floating-point invalid-operation exception has a flag and a mask bit associated with it in the 
FPU status and control registers, respectively (see “Floating-Point Exception Handling”). The 
mask bit determines how the FPU handles an SNaN value. If the floating-point invalid-operation 
mask bit is set, the SNaN is converted to a QNaN by setting the most-significant fraction bit of the 
value to 1. The result is then stored in the destination operand and the floating-point invalid-
operation flag is set. If the invalid-operation mask is clear, a floating-point invalid-operation fault 
is signaled and no result is stored in the destination operand.

When a real operation or exception delivers a QNaN result, the value of the result depends on the 
source operands, as shown in Table 31-18.

Except for the rules given at the beginning of this section for encoding SNaNs and QNaNs, 
software is free to use the bits in the significand of a NaN for any purpose. Both SNaNs and 
QNaNs can be encoded to carry and store data, such as diagnostic information.

Table 31-18. Rules for Generating QNaNs

Source Operands QNaN Result

An SNaN and a QNaN. The QNaN source operand.

Two SNaNs. The SNaN with the larger significand converted 
into a QNaN.

Two QNaNs. The QNaN with the larger significand.

An SNaN and a real value. The SNaN converted into a QNaN.

A QNaN and a real value. The QNaN source operand.

Neither source operand is a NaN and a floating-
point invalid-operation exception is signaled. The default QNaN real indefinite.
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31.6.1 Uses for Signaling NANs

By unmasking the invalid operation exception, the programmer can use signaling NaNs to trap to 
the exception handler. The generality of this approach and the large number of NaN values that are 
available provide the sophisticated programmer with a tool that can be applied to a variety of 
special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real) array 
elements. The compiler can preinitialize each array element with a signaling NaN whose 
significand contained the index (relative position) of the element. Then, if an application program 
attempts to access an element that it had not initialized, it can use the NaN placed there by the 
compiler. If the invalid operation exception is unmasked, an interrupt will occur, and the exception 
handler will be invoked. The exception handler can determine which element has been accessed, 
since the operand address field of the exception pointers will point to the NaN, and the NaN will 
contain the index number of the array element.

31.6.2 Uses for Quiet NANs

Quiet NaNs are often used to speed up debugging. In its early testing phase, a program often 
contains multiple errors. An exception handler can be written to save diagnostic information in 
memory whenever it was invoked. After storing the diagnostic data, it can supply a quiet NaN as 
the result of the erroneous instruction, and that NaN can point to its associated diagnostic area in 
memory. The program will then continue, creating a different NaN for each error. When the 
program ends, the NaN results can be used to access the diagnostic data saved at the time the errors 
occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications which use computed results in further computations, an undetected 
QNaN can invalidate all subsequent results. Such applications should therefore periodically check 
for QNaNs and provide a recovery mechanism to be used if a QNaN result is detected. 

31.7 Floating-Point Exception Handling

The FPU detects six classes of exception conditions while executing floating-point instructions:

• Invalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)

• Divide-by-zero (#Z)

• Denormalized operand (#D)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (precision) (#P)

The nomenclature of “#” symbol followed by one or two letters (for example, #IS) is used in this 
manual to indicate exception conditions. It is merely a short-hand form and is not related to 
assembler mnemonics.
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Each of the six exception classes has a corresponding flag bit in the FPU status word and a mask bit 
in the FPU control word (see “FPU Status Register” and “FPU Control Word”, respectively). In 
addition, the exception summary (ES) flag in the status word indicates when any of the exceptions 
has been detected, and the stack fault (SF) flag (also in the status word) distinguishes between the 
two types of invalid-operation exceptions.

When the FPU detects a floating-point exception, it sets the appropriate flags in the FPU status 
word, then takes one of two possible courses of action:

• Handles the exception automatically, producing a predefined (and often times usable result), 
while allowing program execution to continue undisturbed.

• Invokes a software exception handler to handle the exception.

The following sections describe how the FPU handles exceptions (either automatically or by 
calling a software exception handler), how the FPU detects the various floating-point exceptions, 
and the automatic (masked) response to the floating-point exceptions.

31.7.1 Arithmetic vs. Non-arithmetic Instructions

When dealing with floating-point exceptions, it is useful to distinguish between arithmetic 
instructions and non-arithmetic instructions. Non-arithmetic instructions have no operands or 
do not make substantial changes to their operands. Arithmetic instructions do make significant 
changes to their operands; in particular, they make changes that could result in a floating-point 
exception being signaled. Table 31-19 lists the non-arithmetic and arithmetic instructions. It should 
be noted that some non-arithmetic instructions can signal a floating-point stack (fault) exception, 
but this exception is not the result of an operation on an operand.

31.7.2 Automatic Exception Handling

If the FPU detects an exception condition for a masked exception (an exception with its mask bit 
set), it sets the exception flag for the exception and delivers a predefined (default) response and 
continues executing instructions. The masked (default) responses to exceptions have been chosen 
to deliver a reasonable result for each exception condition and are generally satisfactory for most 
floating-point applications. By masking or unmasking specific floating-point exceptions in the 
FPU control word, programmers can delegate responsibility for most exceptions to the FPU and 
reserve the most severe exception conditions for software exception handlers. 

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that 
have occurred since they were last cleared. A programmer can thus mask all exceptions, run a 
calculation, and then inspect the exception flags to see if any exceptions were detected during the 
calculation.

Table 31-19. Arithmetic and Non-arithmetic Instructions  (Sheet 1 of 2)

Non-arithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD/FADDP

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOM/FCOMP/FCOMPP
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Note that when exceptions are masked, the FPU may detect multiple exceptions in a single 
instruction, because it continues executing the instruction after performing its masked response. 
For example, the FPU can detect a denormalized operand, perform its masked response to this 
exception, and then detect numeric underflow.

31.7.3 Software Exception Handling

The FPU in the Pentium Pro, Pentium, and Intel486 processors provides two different modes of 
operation for invoking a software exception handler for floating-point exceptions: native mode and 
MS-DOS compatibility mode. The mode of operation is selected with the NE flag of control 
register CR0. (See Chapter 2, System Architecture Overview, in the Intel Architecture Software 
Developer’s Manual, Volume 3, for more information about the NE flag.)

FINCSTP FCOS

FINIT/FNINIT FDIV/FDIVP/FDIVR/FDIVRP

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM/FICOMP

FLD constant FIDIV/FIDIVR

FLDCW FILD

FLDENV FIMUL

FNOP FIST/FISTP

FRSTOR FISUB/FISUBR

FSAVE/FNSAVE FLD (conversion)

FST/FSTP (register-to-register) FMUL/FMULP

FSTP (extended format to memory) FPATAN

FSTCW/FNSTCW FPREM/FPREM1

FSTENV/FNSTENV FPTAN

FSTSW/FNSTSW FRNDINT

WAIT/FWAIT FSCALE

FXAM FSIN

FXCH FSINCOS

FSQRT

FST/FSTP (conversion)

FSUB/FSUBP/FSUBR/FSUBRP

FTST

FUCOM/FUCOMP/FUCOMPP

FXTRACT

FYL2X/FYL2XP1

Table 31-19. Arithmetic and Non-arithmetic Instructions  (Sheet 2 of 2)

Non-arithmetic Instructions Arithmetic Instructions
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31.7.3.1 Native Mode

The native mode for handling floating-point exceptions is selected by setting the NE flag in control 
register CR0 to 1. In this mode, if the FPU detects an exception condition while executing a 
floating-point instruction and the exception is unmasked (the mask bit for the exception is cleared), 
the FPU sets the flag for the exception and the ES flag in the FPU status word. It then invokes the 
software exception handler through the floating-point-error exception (#MF, vector 16), 
immediately before execution of any of the following instructions in the processor’s instruction 
stream:

• The next floating-point instruction, unless it is one of the non-waiting instructions (FNINIT, 
FNCLEX, FNSTSW, FNSTCW, FNSTENV, and FNSAVE). 

• The next WAIT/FWAIT instruction.

• The next MMX instruction.

If the next floating-point instruction in the instruction stream is a non-waiting instruction, the FPU 
executes the instruction without invoking the software exception handler.

31.7.3.2 MS-DOS* Compatibility Mode

If the NE flag in control register CR0 is set to 0, the MS-DOS compatibility mode for handling 
floating-point exceptions is selected. In this mode, the software exception handler for floating-
point exceptions is invoked externally using the processor’s FERR#, INTR, and IGNNE# pins. 
This method of reporting floating-point errors and invoking an exception handler is provided to 
support the floating-point exception handling mechanism used in PC systems that are running the 
MS-DOS or Windows* 95 operating system.

The MS-DOS compatibility mode is typically used as follows to invoke the floating-point 
exception handler:

1. If the FPU detects an unmasked floating-point exception, it sets the flag for the exception and 
the ES flag in the FPU status word.

2. If the IGNNE# pin is deasserted, the FPU then asserts the FERR# pin either immediately, or 
else delayed (deferred) until just before the execution of the next waiting floating-point 
instruction or MMX™ instruction. Whether the FERR# pin is asserted immediately or delayed 
depends on the type of processor, the instruction, and the type of exception.

3. If a preceding floating-point instruction has set the exception flag for an unmasked FPU 
exception, the processor freezes just before executing the next WAIT instruction, waiting 
floating-point instruction, or MMX instruction. Whether the FERR# pin was asserted at the 
preceding floating-point instruction or is just now being asserted, the freezing of the processor 
assures that the FPU exception handler will be invoked before the new floatingpoint (or 
MMX) instruction gets executed.

4. The FERR# pin is connected through external hardware to IRQ13 of a cascaded, 
programmable interrupt controller (PIC). When the FERR# pin is asserted, the PIC is 
programmed to generate an interrupt 75H.

5. The PIC asserts the INTR pin on the processor to signal the interrupt 75H.

6. The BIOS for the PC system handles the interrupt 75H by branching to the interrupt 2 (NMI) 
interrupt handler.

7. The interrupt 2 handler determines if the interrupt is the result of an NMI interrupt or a 
floating-point exception.
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8. If a floating-point exception is detected, the interrupt 2 handler branches to the floating-point 
exception handler.

If the IGNNE# pin is asserted, the processor ignores floating-point error conditions. This pin is 
provided to inhibit floating-point exceptions from being generated while the floating-point 
exception handler is servicing a previously signaled floating-point exception.

“Guidelines for Writing FPU Exception Handlers”, describes the MS-DOS compatibility mode in 
much greater detail.

31.7.3.3 Typical Floating-Point Exception Handler Actions

After the floating-point exception handler is invoked, the processor handles the exception in the 
same manner that it handles non-FPU exceptions. (The floating-point exception handler is 
normally part of the operating system or executive software.) A typical action of the exception 
handler is to store FPU state information in memory (with the FSTENV/FNSTENV or FSAVE/
FNSAVE instructions) so that it can evaluate the exception and formulate an appropriate response 
(see “Saving the FPU’s State”). Other typical exception handler actions include:

• Examining stored FPU state information (control, status, and tag words, and FPU instruction 
and operand pointers) to determine the nature of the error.

• Correcting the condition that caused the error.

• Clearing the exception bits in the status word.

• Returning to the interrupted program and resuming normal execution.

If the faulting floating-point instruction is followed by one or more non-floating-point instructions, 
it may not be useful to re-execute the faulting instruction. See “Floating-Point Exception 
Synchronization”, for more information on synchronizing floating-point exceptions.

In cases where the handler needs to restart program execution with the faulting instruction, the 
IRET instruction cannot be used directly. The reason for this is that because the exception is not 
generated until the next floating-point or WAIT/FWAIT instruction following the faulting floating-
point instruction, the return instruction pointer on the stack may not point to the faulting 
instruction. To restart program execution at the faulting instruction, the exception handler must 
obtain a pointer to the instruction from the saved FPU state information, load it into the return 
instruction pointer location on the stack, and then execute the IRET instruction.

In lieu of writing recovery procedures, the exception handler can do the following:

• Increment an exception counter for later display or printing.

• Print or display diagnostic information (such as, the FPU environment and registers).

• Halt further program execution.

See “FPU Exception Handling Examples”, for general examples of floating-point exception 
handlers and for specific examples of how to write a floating-point exception handler when using 
the MS-DOS compatibility mode.
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31.8 Floating-Point Exception Conditions

The following sections describe the various conditions that cause a floating-point exception to be 
generated and the masked response of the FPU when these conditions are detected. Chapter 3, 
Instruction Set Reference, in the Intel Architecture Software Developer’s Manual, Volume 2, lists 
the floating-point exceptions that can be signaled for each floating-point instruction.

31.8.1 Invalid Operation Exception

The floating-point invalid-operation exception occurs in response to two general types of 
operations:

• Stack overflow or underflow (#IS).

• Invalid arithmetic operand (#IA).

The flag for this exception (IE) is bit 0 of the FPU status word, and the mask bit (IM) is bit 0 of the 
FPU control word. The stack fault flag (SF) of the FPU status word indicates the type of operation 
caused the exception. When the SF flag is set to 1, a stack operation has resulted in stack overflow 
or underflow; when the flag is cleared to 0, an arithmetic instruction has encountered an invalid 
operand. Note that the FPU explicitly sets the SF flag when it detects a stack overflow or underflow 
condition, but it does not explicitly clear the flag when it detects an invalid-arithmetic-operand 
condition. As a result, the state of the SF flag can be 1 following an invalid-arithmetic-operation 
exception, if it was not cleared from the last time a stack overflow or underflow condition 
occurred. See “Stack Fault Flag”, for more information about the SF flag.

31.8.1.1 Stack Overflow or Underflow Exception (#IS)

The FPU tag word keeps track of the contents of the registers in the FPU register stack (see “FPU 
Tag Word”). It then uses this information to detect two different types of stack faults:

• Stack overflow—an instruction attempts to write a value into a non-empty FPU register

• Stack underflow—an instruction attempts to read a value from an empty FPU register. 

When the FPU detects stack overflow or underflow, it sets the IE flag (bit 0) and the SF flag (bit 6) 
in the FPU status word to 1. It then sets condition-code flag C1 (bit 9) in the FPU status word to 1 
if stack overflow occurred or to 0 if stack underflow occurred. 

If the invalid-operation exception is masked, the FPU then returns the real, integer, or BCD-integer 
indefinite value to the destination operand, depending on the instruction being executed. This value 
overwrites the destination register or memory location specified by the instruction.

If the invalid-operation exception is not masked, a software exception handler is invoked (see 
“Software Exception Handling”) and the top-of-stack pointer (TOP) and source operands remain 
unchanged.

The term stack overflow comes from the condition where the a program has pushed eight values 
onto the FPU register stack and the next value pushed on the stack causes a stack wraparound to a 
register that already contains a value. The term stack underflow refers to the opposite condition 
from stack overflow. Here, a program has popped eight values from the FPU register stack and the 
next value popped from the stack causes stack wraparound to an empty register.
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31.8.1.2 Invalid Arithmetic Operand Exception (#IA)

The FPU is able to detect a variety of invalid arithmetic operations that can be coded in a program. 
These operations generally indicate a programming error, such as dividing ∞ by ∞. Table 31-20 
lists the invalid arithmetic operations that the FPU detects. This group includes the invalid 
operations defined in IEEE Std. 854.

When the FPU detects an invalid arithmetic operand, it sets the IE flag (bit 0) in the FPU status 
word to 1. If the invalid-operation exception is masked, the FPU then returns an indefinite value to 
the destination operand or sets the floating-point condition codes, as shown in Table 31-20. If the 
invalid-operation exception is not masked, a software exception handler is invoked (see “Software 
Exception Handling”) and the top-of-stack pointer (TOP) and source operands remain unchanged.

31.8.2 Divide-By-Zero Exception (#Z)

The FPU reports a floating-point zero-divide exception whenever an instruction attempts to divide 
a finite non-zero operand by 0. The flag (ZE) for this exception is bit 2 of the FPU status word, and 
the mask bit (ZM) is bit 2 of the FPU control word. The FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, 
and FIDIVR instructions and the other instructions that perform division internally (FYL2X and 
FXTRACT) can report the divide-by-zero exception. 

Table 31-20. Invalid Arithmetic Operations and the Masked Responses to Them

Condition Masked Response

Any arithmetic operation on an operand that is in an 
unsupported format.

Return the real indefinite value to the destination 
operand.

Any arithmetic operation on a SNaN. Return a QNaN to the destination operand (see 
“Operating on NaNs”).

Compare and test operations: one or both operands 
are NaNs.

Set the condition code flags (C0, C2, and C3) in 
the FPU status word to 111B (not comparable).

Addition: operands are opposite-signed infinities.
Subtraction: operands are like-signed infinities.

Return the real indefinite value to the destination 
operand.

Multiplication: ∞ by 0; 0 by ∞. Return the real indefinite value to the destination 
operand.

Division: ∞ by ∞; 0 by 0. Return the real indefinite value to the destination 
operand.

Remainder instructions FPREM, FPREM1: modulus 
(divisor) is 0 or dividend is ∞.

Return the real indefinite; clear condition code 
flag C2 to 0.

Trigonometric instructions FCOS, FPTAN, FSIN, 
FSINCOS: source operand is ∞.

Return the real indefinite; clear condition code 
flag C2 to 0.

FSQRT: negative operand (except FSQRT (–0) = –0); 
FYL2X: negative operand (except FYL2X (–0) = –∞); 
FYL2XP1: operand more negative than –1.

Return the real indefinite value to the destination 
operand.

FBSTP: source register is empty or it contains a NaN, 
∞, or a value that cannot be represented in 18 
decimal digits.

Store BCD integer indefinite value in the 
destination operand.

FXCH: one or both registers are tagged empty. Load empty registers with the real indefinite 
value, then perform the exchange.

FIST/FISTP instruction when input operand <> 
MAXINT for destination operand size. Return MAXNEG to destination operand.
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When a divide-by-zero exception occurs and the exception is masked, the FPU sets the ZE flag and 
returns the values shown in Table 7-21. If the divide-by-zero exception is not masked, the ZE flag 
is set, a software exception handler is invoked (see “Software Exception Handling”), and the top-
of-stack pointer (TOP) and source operands remain unchanged.

31.8.3 Denormal Operand Exception (#D)

The FPU signals the denormal-operand exception under the following conditions:

• If an arithmetic instruction attempts to operate on a denormal operand (see “Normalized and 
Denormalized Finite Numbers”).

• If an attempt is made to load a denormal single- or double-real value into an FPU register. (If 
the denormal value being loaded is an extended-real value, the denormal-operand exception is 
not reported.)

The flag (DE) for this exception is bit 1 of the FPU status word, and the mask bit (DM) is bit 1 of 
the FPU control word.

When a denormal-operand exception occurs and the exception is masked, the FPU sets the DE flag, 
then proceeds with the instruction. The denormal operand in single- or double-real format is 
automatically normalized when converted to the extended-real format. Operating on denormal 
numbers will produce results at least as good as, and often better than, what can be obtained when 
denormal numbers are flushed to zero. In fact, subsequent operations will benefit from the 
additional precision of the internal extended-real format. Most programmers mask this exception 
so that a computation may proceed, then analyze any loss of accuracy when the final result is 
delivered.

When a denormal-operand exception occurs and the exception is not masked, the DE flag is set and 
a software exception handler is invoked (see “Software Exception Handling”). The top-of-stack 
pointer (TOP) and source operands remain unchanged. When denormal operands have reduced 
significance due to loss of low-order bits, it may be advisable to not operate on them. Precluding 
denormal operands from computations can be accomplished by an exception handler that responds 
to unmasked denormal-operand exceptions.

31.8.4 Numeric Overflow Exception (#O)

The FPU reports a floating-point numeric overflow exception (#O) whenever the rounded result of 
an arithmetic instruction exceeds the largest allowable finite value that will fit into the real format 
of the destination operand. For example, if the destination format is extended-real (80 bits), 
overflow occurs when the rounded result falls outside the unbiased range of −1.0 ∗ 216384 to 1.0 ∗ 
216384 (exclusive). Numeric overflow can occur on arithmetic operations where the result is stored 
in an FPU data register. It can also occur on store-real operations (with the FST and FSTP 

Table 31-21. Divide-By-Zero Conditions and the Masked Responses to Them

Condition Masked Response

Divide or reverse divide operation 
with a 0 divisor.

Returns an ∞ signed with the exclusive OR of the sign of the two 
operands to the destination operand.

FYL2X instruction. Returns an ∞ signed with the opposite sign of the non-zero 
operand to the destination operand.

FXTRACT instruction. ST(1) is set to –∞; ST(0) is set to 0 with the same sign as the 
source operand.
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instructions), where a within-range value in a data register is stored in memory in a single- or 
double-real format. The overflow threshold range for the single-real format is −1.0 ∗ 2128 to 1.0 ∗ 
2128; the range for the double-real format is −1.0 ∗ 21024 to 1.0 ∗ 21024.

The numeric overflow exception cannot occur when overflow occurs when storing values in an 
integer or BCD integer format. Instead, the invalid-arithmetic-operand exception is signaled.

The flag (OE) for the numeric-overflow exception is bit 3 of the FPU status word, and the mask bit 
(OM) is bit 3 of the FPU control word. 

When a numeric-overflow exception occurs and the exception is masked, the FPU sets the OE flag 
and returns one of the values shown in Table 31-22. The value returned depends on the current 
rounding mode of the FPU (see “Rounding Control Field”).

.

The action that the FPU takes when numeric overflow occurs and the numeric-overflow exception 
is not masked, depends on whether the instruction is supposed to store the result in memory or on 
the register stack.

If the destination is a memory location, the OE flag is set and a software exception handler is 
invoked (see “Software Exception Handling”). The top-of-stack pointer (TOP) and source and 
destination operands remain unchanged.

If the destination is the register stack, the exponent of the rounded result is divided by 224576 and 
the result is stored along with the significand in the destination operand. Condition code bit C1 in 
the FPU status word (called in this situation the “round-up bit”) is set if the significand was 
rounded upward and cleared if the result was rounded toward 0. After the result is stored, the OE 
flag is set and a software exception handler is invoked.

The scaling bias value 24,576 is equal to 3 ∗ 213. Biasing the exponent by 24,576 normally 
translates the number as nearly as possible to the middle of the extended-real exponent range so 
that, if desired, it can be used in subsequent scaled operations with less risk of causing further 
exceptions.

When using the FSCALE instruction, massive overflow can occur, where the result is too large to 
be represented, even with a bias-adjusted exponent. Here, if overflow occurs again, after the result 
has been biased, a properly signed ∞ is stored in the destination operand.

Table 31-22. Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number
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31.8.5 Numeric Underflow Exception (#U)

The FPU reports a floating-point numeric underflow exception (#U) whenever the rounded result 
of an arithmetic instruction is “tiny” (that is, less than the smallest possible normalized, finite value 
that will fit into the real format of the destination operand). For example, if the destination format 
is extended-real (80 bits), underflow occurs when the rounded result falls in the unbiased range of 
−1.0 ∗ 2−16382 to 1.0 ∗ 2−16382 (exclusive). Like numeric overflow, numeric underflow can occur on 
arithmetic operations where the result is stored in an FPU data register. It can also occur on store-
real operations (with the FST and FSTP instructions), where a within-range value in a data register 
is stored in memory in a single- or double-real format. The underflow threshold range for the 
single-real format is −1.0 ∗ 2−126 to 1.0 ∗ 2−126; the range for the double-real format is −1.0 ∗ 2−1022 
to 1.0 ∗ 2−1022. (The numeric underflow exception cannot occur when storing values in an integer 
or BCD integer format.)

The flag (UE) for the numeric-underflow exception is bit 4 of the FPU status word, and the mask 
bit (UM) is bit 4 of the FPU control word. 

When a numeric-underflow exception occurs and the exception is masked, the FPU denormalizes 
the result (see “Normalized and Denormalized Finite Numbers”). If the denormalized result is 
exact, the FPU stores the result in the destination operand, without setting the UE flag. If the 
denormal result is inexact, the FPU sets the UE flag, then goes on to handle the inexact-result 
exception condition (see “Inexact-Result (Precision) Exception (#P)”). It is important to note that if 
numeric-underflow is masked, a numeric-underflow exception is signaled only if the denormalized 
result is inexact. If the denormalized result is exact, no flags are set and no exceptions are signaled.

The action that the FPU takes when numeric underflow occurs and the numeric-underflow 
exception is not masked, depends on whether the instruction is supposed to store the result in 
memory or on the register stack.

If the destination is a memory location, the UE flag is set and a software exception handler is 
invoked (see “Software Exception Handling”). The top-of-stack pointer (TOP) and source and 
destination operands remain unchanged.

If the destination is the register stack, the exponent of the rounded result is multiplied by 
224576 and the product is stored along with the significand in the destination operand. Condition 
code bit C1 in the FPU the status register (acting here as a “round-up bit”) is set if the significand 
was rounded upward and cleared if the result was rounded toward 0. After the result is stored, the 
UE flag is set and a software exception handler is invoked.

The scaling bias value 24,576 is the same as is used for the overflow exception and has the same 
effect, which is to translate the result as nearly as possible to the middle of the extended-real 
exponent range.

When using the FSCALE instruction, massive underflow can occur, where the result is too tiny to 
be represented, even with a bias-adjusted exponent. Here, if underflow occurs again, after the result 
has been biased, a properly signed 0 is stored in the destination operand.

31.8.6 Inexact-Result (Precision) Exception (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an 
operation is not exactly representable in the destination format. For example, the fraction 1/3 
cannot be precisely represented in binary form. This exception occurs frequently and indicates that 
some (normally acceptable) accuracy has been lost. The exception is supported for applications 
that need to perform exact arithmetic only. Because the rounded result is generally satisfactory for 
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most applications, this exception is commonly masked. Note that the transcendental instructions 
[FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1] by nature produce 
inexact results.

The inexact-result exception flag (PE) is bit 5 of the FPU status word, and the mask bit (PM) is bit 
5 of the FPU control word. 

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric 
overflow or underflow condition has not occurred, the FPU sets the PE flag and stores the rounded 
result in the destination operand. The current rounding mode determines the method used to round 
the result (see “Rounding Control Field”). The C1 (round-up) bit in the FPU status word indicates 
whether the inexact result was rounded up (C1 is set) or “not rounded up” (C1 is cleared). In the 
“not rounded up” case, the least-significant bits of the inexact result are truncated so that the result 
fits in the destination format.

If the inexact-result exception is not masked when an inexact result occurs and numeric overflow 
or underflow has not occurred, the FPU performs the same operation described in the previous 
paragraph and, in addition, invokes a software exception handler (see “Software Exception 
Handling”).

If an inexact result occurs in conjunction with numeric overflow or underflow, one of the following 
operations is carried out:

• If an inexact result occurs along with masked overflow or underflow, the OE or UE flag and 
the PE flag are set and the result is stored as described for the overflow or underflow 
exceptions (see “Numeric Overflow Exception (#O)” or “Numeric Underflow Exception 
(#U)”). If the inexact-result exception is unmasked, the FPU also invokes the software 
exception handler.

• If an inexact result occurs along with unmasked overflow or underflow and the destination 
operand is a register, the OE or UE flag and the PE flag are set, the result is stored as described 
for the overflow or underflow exceptions, and the software exception handler is invoked.

• If an inexact result occurs along with unmasked overflow or underflow and the destination 
operand is a memory location, the inexact-result condition is ignored.

31.8.7 Exception Priority

The processor handles exceptions according to a predetermined precedence. When an instruction 
generates two or more exception conditions, the exception precedence sometimes results in the 
higher-priority exception being handled and the lower-priority exceptions being ignored. For 
example, dividing an SNaN by zero can potentially signal an invalid-arithmetic-operand exception 
(due to the SNaN operand) and a divide-by-zero exception. Here, if both exceptions are masked, 
the FPU handles the higher-priority exception only (the invalid-arithmetic-operand exception), 
returning a real indefinite to the destination. Alternately, a denormal-operand or inexact-result 
exception can accompany a numeric underflow or overflow exception, with both exceptions being 
handled.

The precedence for floating-point exceptions is as follows:

1. Invalid-operation exception, subdivided as follows:

a. Stack underflow.

b. Stack overflow.

c. Operand of unsupported format.
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d. SNaN operand.

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand has 
precedence over lower-priority exceptions. For example, a QNaN divided by zero results in a 
QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero exception.

4. Denormal-operand exception. If masked, then instruction execution continues, and a lower-
priority exception can occur as well.

5. Numeric overflow and underflow exceptions in conjunction with the inexact-result exception.

6. Inexact-result exception.

Invalid operation, zero divide, and denormal operand exceptions are detected before a floating-
point operation begins, whereas overflow, underflow, and precision errors are not detected until a 
true result has been computed. When a pre-operation exception is detected, the FPU register stack 
and memory have not yet been updated, and appear as if the offending instructions has not been 
executed. When a post-operation exception is detected, the register stack and memory may be 
updated with a result (depending on the nature of the error).

31.9 Floating-Point Exception Synchronization

Because the integer unit and FPU are separate execution units, it is possible for the processor to 
execute floating-point, integer, and system instructions concurrently. No special programming 
techniques are required to gain the advantages of concurrent execution. (Floating-point instructions 
are placed in the instruction stream along with the integer and system instructions.) However, 
concurrent execution can cause problems for floating-point exception handlers. 

This problem is related to the way the FPU signals the existence of unmasked floating-point 
exceptions. (Special exception synchronization is not required for masked floating-point 
exceptions, because the FPU always returns a masked result to the destination operand.) 

When a floating-point exception is unmasked and the exception condition occurs, the FPU stops 
further execution of the floating-point instruction and signals the exception event. On the next 
occurrence of a floating-point instruction or a WAIT/FWAIT instruction in the instruction stream, 
the processor checks the ES flag in the FPU status word for pending floating-point exceptions. It 
floating-point exceptions are pending, the FPU makes an implicit call (traps) to the floating-point 
software exception handler. The exception handler can then execute recovery procedures for 
selected or all floating-point exceptions.

Synchronization problems occur in the time frame between when the exception is signaled and 
when it is actually handled. Because of concurrent execution, integer or system instructions can be 
executed during this time frame. It is thus possible for the source or destination operands for a 
floating-point instruction that faulted to be overwritten in memory, making it impossible for the 
exception handler to analyze or recover from the exception.

To solve this problem, an exception synchronizing instruction (either a floating-point instruction or 
a WAIT/FWAIT instruction) can be placed immediately after any floating-point instruction that 
might present a situation where state information pertaining to a floating-point exception might be 
lost or corrupted. Floating-point instructions that store data in memory are prime candidates for 
synchronization. For example, the following three lines of code have the potential for exception 
synchronization problems:
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FILD COUNT ; Floating-point instruction
INC COUNT  ; Integer instruction
FSQRT      ; Subsequent floating-point instruction

In this example, the INC instruction modifies the result of a floating-point instruction (FILD). If an 
exception is signaled during the execution of the FILD instruction, the result stored in the COUNT 
memory location might be overwritten before the exception handler is called.

Rearranging the instructions, as follows, so that the FSQRT instruction follows the FILD 
instruction, synchronizes the exception handling and eliminates the possibility of the exception 
being handled incorrectly.

FILD COUNT ; Floating-point instruction
FSQRT      ; Subsequent floating-point instruction synchronizes

 ; any exceptions generated by the FILD instruction.
INC COUNT  ; Integer instruction

The FSQRT instruction does not require any synchronization, because the results of this instruction 
are stored in the FPU data registers and will remain there, undisturbed, until the next floating-point 
or WAIT/FWAIT instruction is executed. To absolutely insure that any exceptions emanating from 
the FSQRT instruction are handled (for example, prior to a procedure call), a WAIT instruction can 
be placed directly after the FSQRT instruction.

Note that some floating-point instructions (non-waiting instructions) do not check for pending 
unmasked exceptions (see “FPU Control Instructions”). They include the FNINIT, FNSTENV, 
FNSAVE, FNSTSW, FNSTCW, and FNCLEX instructions. When an FNINIT, FNSTENV, 
FNSAVE, or FNCLEX instruction is executed, all pending exceptions are essentially lost (either 
the FPU status register is cleared or all exceptions are masked). The FNSTSW and FNSTCW 
instructions do not check for pending interrupts, but they do not modify the FPU status and control 
registers. A subsequent “waiting” floating-point instruction can then handle any pending 
exceptions.

31.10 Floating-Point Exceptions Summary

Table 31-23 lists the floating-point instruction mnemonics in alphabetical order. For each
mnemonic, it summarizes the exceptions that the instruction may cause. See “Floating-Point Excep-
tion Conditions”, for a detailed discussion of the floating-point exceptions. The following codes in-
dicate the floating-point exceptions:

#IS Invalid-operation exception for stack underflow or stack overflow.

#IA Invalid-operation exception for invalid arithmetic operands and 
unsupported formats.

#D Denormal-operand exception.

#Z Divide-by-zero exception.

#O Numeric-overflow exception.

#U Numeric-underflow exception.

#P Inexact-result (precision) exception.
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Mnemonic Instruction #IS #IA #D #Z #O #U #P

F2XM1 2X–1 Y Y Y Y Y

FABS Absolute value Y

FADD(P) Add real Y Y Y Y Y Y

FBLD BCD load Y

FBSTP BCD store and pop Y Y Y

FCHS Change sign Y

FCLEX Clear exceptions

FCMOVcc Floating-point conditional move Y

FCOM, FCOMP, FCOMPP Compare real Y Y Y

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP Compare real and set EFLAGS Y Y

FCOS Cosine Y Y Y Y Y

FDECSTP Decrement stack pointer

FDIV(R)(P) Divide real Y Y Y Y Y Y Y

FFREE Free register

Mnemonic Instruction #IS #IA #D #Z #O #U #P

FIADD Integer add Y Y Y Y Y Y

FICOM(P) Integer compare Y Y Y

FIDIV Integer divide Y Y Y Y Y Y

FIDIVR Integer divide reversed Y Y Y Y Y Y Y

FILD Integer load Y

FIMUL Integer multiply Y Y Y Y Y Y

FINCSTP Increment stack pointer

FINIT Initialize processor

FIST(P) Integer store Y Y Y

FISUB(R) Integer subtract Y Y Y Y Y Y

FLD extended or stack Load real Y

FLD single or double Load real Y Y Y

FLD1 Load + 1.0 Y

FLDCW Load Control word Y Y Y Y Y Y Y

FLDENV Load environment Y Y Y Y Y Y Y

FLDL2E Load log2e Y

FLDL2T Load log210 Y

FLDLG2 Load log102 Y

FLDLN2 Load loge2 Y

FLDPI Load π Y

FLDZ Load + 0.0 Y
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FMUL(P) Multiply real Y Y Y Y Y Y

FNOP No operation

FPATAN Partial arctangent Y Y Y Y Y

FPREM Partial remainder Y Y Y Y

FPREM1 IEEE partial remainder Y Y Y Y

FPTAN Partial tangent Y Y Y Y Y

FRNDINT Round to integer Y Y Y Y

FRSTOR Restore state Y Y Y Y Y Y Y

FSAVE Save state

FSCALE Scale Y Y Y Y Y Y

FSIN Sine Y Y Y Y Y

FSINCOS Sine and cosine Y Y Y Y Y

Mnemonic Instruction #IS #IA #D #Z #O #U #P

FSQRT Square root Y Y Y Y

FST(P) stack or extended Store real Y

FST(P) single or double Store real Y Y Y Y Y Y

FSTCW Store control word

FSTENV Store environment

FSTSW (AX) Store status word

FSUB(R)(P) Subtract real Y Y Y Y Y Y

FTST Test Y Y Y

FUCOM(P)(P) Unordered compare real Y Y Y

FWAIT CPU Wait

FXAM Examine

FXCH Exchange registers Y

FXTRACT Extract Y Y Y Y

FYL2X Y ⋅ log2X Y Y Y Y Y Y Y

FYL2XP1 Y ⋅ log2(X + 1) Y Y Y Y Y

Table 31-23. Floating-Point Exceptions Summary (Continued)


