
Building a fast NVMe

passthru

Kanchan Joshi

Memory, Samsung Semiconductor (SSIR)

Outline

▪ NVMe Generic Device: why and what

▪ Async IOCTL: user-interface and under-the-hood

▪ NVMe: Moving from sync passthru to async uring passthru

▪ Feedback / Opens / Next steps

Credits

▪ io-uring: for being around

▪ Maintainers (Jens, Christoph, Keith) & the mailing-list: for all the directions &

feedback so far

NVMe block-interface

▪ Subject to conditions/rules
▪ Block-device with zero capacity

▪ Block-device marked as read-only

▪ Block-device marked hidden

▪ This generally happens when
▪ Device contains a feature that kernel

does not support (e.g. unsupported
format/PI)

▪ New device/command-set types (e.g. KV,
ZNS)

NVMe generic device

New kid on the block char!

NVMe Generic Interface

▪ Per-namespace char

device (/dev/ngXnY)

▪ Upstream in NVMe

(5.13)

▪ Always available

▪ In-kernel path (unlike

SPDK) for early

adopters of

technology/features

U
se

r
Sp

ac
e

Ke
rn

el
 S

p
ac

e

Storage Device

Mounted File-
System

Block
Device

Generic Device SPDK

In-Kernel I/O Path

File
Abstraction

Raw Block
Abstraction

Raw Char
Abstraction

VFS + FS

Block Layer

Driver Ke
rn

el
-b

yp
a

ss
 I/

O
 P

a
th

File I/O Block I/O Driver IOCTLs Driver
API

SCSI NVMe

Using the NVMe char device

▪ Nvme-cli can enumerate and do all that it

can do on block-device

▪ Usable over NVMeOF
▪ Automatic, when block interface

(/dev/nvme0n1) is up

▪ When not, available after enabling controller
passthru (CONFIG_NVME_TARGET_PASSTHRU)

▪ Application can send any NVMe

command via passthru interface
▪ Current transport: via IOCTL, which isn’t great!

▪ Future transport: io_uring

Turns out Jens had already set about turning ioctl async; in io-uring way

io_uring: in a nutshell

▪ Scalable asynchronous IO infrastructure
▪ File IO as well as Network IO

▪ Async without needing O_DIRECT

▪ Extensible - rapidly adding async variants of sync syscalls

▪ mkdir, link, symlink: few recent ones

▪ User/Kernel interface
▪ Communication backbone: shared ring-buffers (SQ and CQ)

▪ Reduce syscalls & copies

▪ Programming model
▪ Prepare IO: Get SQE from SQ ring, and fill it up (fill more to make a batch)

▪ Submit IO: By calling io_uring_enter

▪ Complete IO: Reap CQE from CQ ring

▪ Submission can be offloaded (no syscall)

▪ Completion can be polled (interrupt-free IO)

Faster IO through io_uring: https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring

Async ioctl: user-interface

SQE

CSQE

64 Bytes

40 Bytes

Payload

ioctl (fd, CMD_OPCODE, arg)

1 2
Keep pointer Store inline

▪ Uring-cmd: IOCTL-like facility

▪ New opcode

IORING_OP_URING_CMD

▪ New ‘command’ SQE (CSQE)

to be used
▪ CSQE = Specialized SQE with 40

bytes of free-space. Useful for
avoiding allocation (for IOCTL
cmd) cost

▪ Can be used in other way too
(e.g. pointer to larger IOCTL cmd)

▪ io_uring passes the payload to
ioctl provider

Jens v4 series: https://lore.kernel.org/linux-nvme/20210317221027.366780-1-axboe@kernel.dk/

https://lore.kernel.org/linux-nvme/20210317221027.366780-1-axboe@kernel.dk/

Async ioctl: inside kernel

▪ Ioctl provider is expected to

implement new uring_cmd method

in file_operations

▪ Io_uring fetches CSQE, and

prepares ‘struct io_uring_cmd’ out

of it; this is used for all further

communication
▪ Submit ioctl by fop->uring_cmd

▪ Provider does what it should, and
returns without blocking

▪ It can return result instantly, or defer

▪ For the latter, it returns by calling
io_uring_cmd_done()

▪ Io_uring collects the result, and post
that into CQE

Io-uring Ioctl provider

fop->uring_cmd(io_uring_cmd*)

return -EIOCBQUEUED

io_uring_cmd_done(io_uring_cmd*, ret) On completion

Async ioctl: use cases

▪ Network IO

▪ Storage:

▪ FS users, ioctl-heavy applications e.g. xfs-scrub

▪ Passthru – already a lean path to storage; make it useful

▪ Other suggestions?

Rest of the slides
cover this!

IOCTL passthru Uring passthru

NVMe passthru: Good and Bad

▪ New features in NVMe are emerging fast

▪ Stacked layers
▪ we have few abstractions stacked upon the storage device; Each has its

purpose & utility (great for general purpose)

▪ May take some time/consensus-building for device-feature to move up the
ladders of abstractions, and show up to user-space

▪ At times, opaqueness need to be explicitly crafted (for future reuse) while
building file/user interface over new device interfaces

▪ This presents challenges for early technology adopters

▪ With passthru interface, Kernel provides a way to skip the
layers

▪ Allows new features to be consumed (in native way at least) without having
to build block-generic commands, in-kernel users/emulations and user-
interfaces

▪ Potential path for building domain-specific application (app-specific FS/DB)

▪ But passthru travels via blocking ioctl – virtually useless for
fast NVMe devices 

Nvme passthru: wire up async

transport

▪ Current nvme ioctl operation
▪ NVMe interface is ‘naturally’ async

▪ Host submit command into NVMe SQ at time T;
Device sends back completion separately in NVMe
CQ at T+ ∆ T

▪ Driver implements sync-over-async by forcing
submitter go into blocking-wait

▪ Uring-cmd based operation:
▪ Driver decouples completion from submission; no

blocking-wait

▪ Async-update-to-user-memory problem
▪ General problem if ioctl-cmd has some fields which need

to be updated on I/O completion

▪ Such fields cannot be touched if completion is arriving in
interrupt-context!

▪ Thankfully there is task-work infra in Kernel
▪ Driver sets up a callback to do all the update; passes that

to io_uring

▪ Io_uring sets up a task-work, that executes driver-defined
callback

Example

▪ Read from /dev/ng0n1

Prepare CSQE for uring-cmd

Allocate and setup nvme
passthru command

Setup passthrough ioctl & cmd
pointer inside uring-cmd

▪ Tidbits for ZNS
▪ Async zone-reset

▪ Zone-append at multi-QD

Features for faster IO

Feature What it does Io_uring Uring-passthru

Register-files Reference fd once and reuse  

SQPoll Offload IO submission  

Fixed-buffer Map IO buffer once and reuse  

Async polling Interrupt-free completion  

▪ Async is first step

▪ Since NVMe is talking to io_uring, there is room for more

Uring passthru: fixed buffer

▪ How fixed-buffer helps
▪ Pin once (pin_user_pages), reuse the buffer: reduce

per-io cost for pin/unpin

▪ Io_uring_register() to pin N buffers upfront; basically
setup up bio_vec for these buffers

▪ Specify IO (fixed-buffer opcode) by using any of the
pre-mapped buffer

▪ Io_uring plumbing
▪ New opcode IORING_OP_URING_CMD_FIXED

▪ Buffer are registered as before, and sqe->buf_index to be
used for IO

▪ Make the corresponding bio_vec accessible to driver

▪ NVMe plumbing
▪ Instead of pin/unpin, talk to io_uring to reuse ‘previously

pinned’ buffer/bio_vec

▪ Same ioctl code; use uring_cmd info to choose between
regular/fixed-buffer

0 Buffer

Buffer
1

buf_index

Kernel I/O Polling

▪ Enables interrupt-free IO; particularly useful for ultra-low-latency storage

▪ What we have

▪ Sync polling: submit IO and spin for completion, in the same syscall; submit-spin

▪ Preadv2()/pwritev2() with RWF_HIPRI

▪ Hybrid polling – relax CPU by sleeping in between; submit-sleep-spin

▪ Async polling: decouple polling from submission; provides third choice (beyond spin and sleep) i.e.
submit more IO or execute app-specific logic

▪ io_uring setup with IORING_SETUP_POLL; all IOs to such ring are polled

▪ What we do not have
▪ ioctl polling / passthru polling

Uring passthru: async polling

Submission Completion

Features for faster IO

Feature What it does Io_uring Uring-passthrough

Register-files Reference fd once and reuse  

SQPoll Offload IO submission  

Fixed-buffer Map IO buffer once and reuse  

Async polling Interrupt-free completion  

Bio-cache In-kernel cache to reduce per-io alloc & free  

▪ Now this looks better than before

▪ And there is new entry in the table: bio-cache
▪ Recently merged

▪ Not IRQ safe, so currently for polled-IO path

▪ For NVMe Passthru – we almost always do in-task completion; so that sorts applicability issue

▪ Passthru bio - currently allocated via bio_kmalloc() Move to bio-set based allocation for async path

How does it perform?

Device saturated
at this point

What is where

▪ NVMe Generic Device:
▪ Kernel support: nvme 5.13

▪ Nvme-cli: https://github.com/linux-nvme/nvme-cli/commit/7169d78c9ccc0835039dcb2ac6f48d4e697e5dcd

▪ Uring-cmd/async IOCTL:
▪ Mailing list: https://lore.kernel.org/linux-nvme/20210317221027.366780-1-axboe@kernel.dk/

▪ Refreshed version: https://git.kernel.dk/cgit/linux-block/log/?h=io_uring-fops.v6

▪ NVMe passthru
▪ Async & fixed-buffer: https://lore.kernel.org/linux-nvme/20210805125539.66958-1-joshi.k@samsung.com/

▪ Passthru polling: in due course, https://github.com/joshkan/nvme-uring-pt

▪ Bio-cache: next step

https://github.com/linux-nvme/nvme-cli/commit/7169d78c9ccc0835039dcb2ac6f48d4e697e5dcd
https://lore.kernel.org/linux-nvme/20210317221027.366780-1-axboe@kernel.dk/
https://git.kernel.dk/cgit/linux-block/log/?h=io_uring-fops.v6
https://lore.kernel.org/linux-nvme/20210805125539.66958-1-joshi.k@samsung.com/
https://github.com/joshkan/nvme-uring-pt

Feedback

▪ Are there ideas to further optimize the path? (e.g. anything for DMA)

