LINUX

PLUMBERS m @

CONFERENCE s

BUIIdlng a fast NVMe
passthru

Kanchan Joshi

Memory, Samsung Semiconductor (SSIR)

LINUX .
PLUMBERS Outline m
CON FE RENCE > September 20-24, 2021 @

= NVMe Generic Device: why and what
= Async IOCTL: user-interface and under-the-hood
= NVMe: Moving from sync passthru to-async uring passthru

» Feedback/ Opens / Next steps

EIMEERs Credits 0] @

CON FE RENCE > September 20-24, 2021
= jo-uring: for being around

= Maintainers (Jens, Christoph, Keith) & the mailing-list: for all the directions &
feedback so far

LINUX -
PLUMBERS NVMe block-interface
CONFE RENCE > September 20-24, 2021

nvme-cl1 sblockdev --getsz /dev/nvmeonl

= Subject to conditions/rules

= Block-device with zero capacity

nvme-cl1 $./nvme list -
NVM Express Subsystems

. Subsystem-NQN
= Block-device marked as read-only ’

= Block-device marked hidden

= This generally happens when

= Device contains a feature that kernel
does not support (e.g. unsupported

QEMU NVMe Ctrl

NSID Usage
format/Pl) ,
. nvmednl i ngénl i 1 12.88 GB /
= New device/command-set types (e.g. KV, RN 12.88 GB /
ZNS)

New kid on the black char!

12

.86 E
12.88 GB

GE

LINUX

PLUMBERS
CONFERENCE ; scptember 20-24, 2021
o | Mounted File- Block : .
o 9 . ' : Generic Device | | SPDK
L o System Device
b : Driver IOCTLs Driver
O reyo oo T3 T
In-Kernel |/O Path <
S
File Raw Block Raw Char g
o] Abstraction Abstraction Abstraction =~
© »
& U ﬂ -
o SN
GEJ VFS + FS f
< Block Layer QEJ
Driver| SCSl || NVMe || §<"

Storage Device

NVMe Generic Interface Q @

Per-namespace char
device (/dev/ngXnY)

Upstream in NVMe
(5.13)

Always available

In-kernel path (unlike
SPDK) for early
adopters of
technology/features

LINUX

PLUMBERS

CON FE RENCE > September 20-24, 2021

= Nvme-cli can enumerate and do all that it
can do on block-device

= Usable over NVMeOF

= Application can send any NVMe

Using the NVMe char device

)

N,

H

Automatic, when block interface
(/dev/nvme0On1) is up

o

When not, available after enabling controller
passthru (CONFIG_NVME_TARGET_PASSTHRU)

command via passthru interface owner
= Current transport: via IOCTL, which isn’t great! Ll

Future transport: io_uring

Turns out Jens had already set about turning ioctl async; in io-uring way

Set device nvme® as the controller we wan

nnnu

t to expose over the fabric
echo -n fdew/nvmed > /sys/kernel/config/nvmet/subsystems/testngn/passthru/device_path
echo 1 » fsys/kernel/config/nvmet/subsystems/testngn/passthru/enable

THIS_MODULE,
nvme_ns_chr_open,
nvme ns_chr _release,

nvme_ns_chr_ioctl, }
compat_ptr_ioctl,

static const struct file operations nvme_ns_chr_fops = {

\\-----—’

LINU : : :
p._':,,:(BERs l0_uring: in a nutshell

CON FE RENCE > September 20-24, 2021

= Scalable asynchronous 10 infrastructure
= File 10 as well as Network 10
= Async without needing O_DIRECT

= Extensible - rapidly adding async variants of sync syscalls @ Submit SQE
= mkdir, link, symlink: few recent ones l
| aw.
= User/Kernel interface .. R N .2
* Communication backbone: shared ring-buffers (SQ and CQ) @ / | N
» Reduce syscalls & copies pmcess' | Y
. Post CQE

= Programming model SQE m ostcQ

] Prepare 10: Get SQE from SQ ring, and fill it up (fill more to make a batch)

* SubmitIO: By calling io_uring_enter File-provider

»= Complete I0: Reap CQE from CQ ring (FS, Block-dev etc.)
= Submission can be offloaded (no syscall) (3) Execution

= Completion can be polled (interrupt-free 10)

Faster 10 through io_uring: https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring

]

User

Kernel

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring

S Async ioctl: user-interface m @

CONFE RENCE > September 20-24, 2021

= Uring-cmd: IOCTL-like facility —
_u32 loctl_cmd;

_u32 unusedl;

n NeW Opcode , " u64 unused2[4];
IORING_OP_URING_CMD static int get_bs(struct 1o_uring *ring, const char *dev)
1)
= New ‘command’ SQE (CSQE) «——— 64Bytes —>
tO be USEd SQE int ret, fd;
ST Q fd = (dev, 0 RDONLY);
= CSQE = Specialized SQE with 40 OPAnIgey,. O_FOORLY!
bytes of free-space. Useful for CSQE o rrh e s
avoiding allocation (for IOCTL L 40Bvtes — memset(csqe, 0, sizeof(*csqe));
\ csqe->hdr.opcode = IORING_OP_URING_CMD;
cmd) cost csqe->hdr.fd = fd;
. csqge->user_data =
= (Can be used in other way too
(e.g. pointer to larger IOCTL cmd) @ @
= jo_uring passes the payload to Store inline Keep pointer io_uring_submit(ring);
5 . 10_uring walt_cqe(ring, &cqe);
ioctl provider printf(*bs=%d\n*, cqe->res);

N\

10_uring_cqe_seen(ring, cqe);
return 0;

Jens v4 series: htips://lore.kernel.org/linux-nvme/20210317221027.366780-1-axboe@kernel.dk/

https://lore.kernel.org/linux-nvme/20210317221027.366780-1-axboe@kernel.dk/

S Async ioctl: inside kernel ‘Q .

CON FE RENCE > September 20-24, 2021

= o struct file_operations {
= |octl provider is expected to strict sodile Rownd;
. . @@ -2059,6 +2068,8 @@ struct file operations {
|mp|ement new ur'ng Cmd methOd struct file *file out, loff_t pos_out,
. .] - loff_t len, unsigned int remap_flags);
in file operations int (*fadvise) (struct file *, loff_t, loff_t, int);
+ int (*uring cmd) (struct 10 uring cmd *, enum 10 uring cmd flags);
. } __randomize layout;
= |o_uring fetches CSQE, and

struct 1o uring cmd {

struct file *file:
_ulh op;
__ulk unused;
_u32 len;

_ uB4 pdul5];

prepares ‘struct io_uring_cmd’ out
of it; this is used for all further m
communication

= Submit ioctl by fop->uring_cmd

= Provider does what it should, and A, I
returns without blocking return - Q

N
¢

loctl provider |

+

+

+

+

fop->uring_cmd(io_uring_cmd*) } -

A

= |t can return result instantly, or defer

= For the latter, it returns by calling
io_uring_cmd_done()

= |o_uring collects the result, and post io_uring_cmd_done(io_uring_cmd*, ret) | o completion
that into CQE

A

'.;'._':,'ﬁ(gms Async loctl: use cases

CON FE RENCE > September 20-24, 2021

= Network IO
= Storage:
= FS users, ioctl-heavy applications e.g. xfs-scrub
= Passthru —already a lean path to storage; make it useful , Restof the slides

) cover this!
= Other suggestions?

LINUX

PLUMBERS m @

CON FE RENCE > September 20-24, 2021

IOCTL passthru ‘ Uring passthru

',;'._':,l,':(BERs NVMe passthru: Good and Bad

CON FE RENCE > September 20-24, 2021 m @

= New features in NVMe are emerging fast

—Q = Stacked layers

Speak tables m = we have few abstractions stacked upon the storage device; Each has its
D*B purpose & utility (great for general purpose)

. . May take some time/consensus-building for device-feature to move up the
abstraction

User ladders of abstractions, and show up to user-space
----- l'-----l------'i---- o ——— . At times, opaqueness need to be explicitly crafted (for future reuse) while
Kernel Speak files Speak building file/user interface over new device interfaces
! ! block speak *= This presents challenges for early technology adopters
FS abstraction etive .) .)
= With passthru interface, Kernel provides a way to skip the
layers
Block abstraction . Allows new features to be consumed (in native way at least) without having
to build block-generic commands, in-kernel users/emulations and user-
Driver: SCSI, NVMe interfaces
ittt ———— - Potential path for building domain-specific application (app-specific FS/DB)
evice

Device: SCSI, NVMe
= But passthru travels via blocking ioctl — virtually useless for

fast NVMe devices ®

LINUX Nvme passthru: wire up async

PLUMBERS .
CONFERENCE scptember 20-24, 2021 transport 6

= Current nvme ioctl Opera’“on static const struct file_operations nvme_ns_chr_fops

.owner = THIS_ MODULE,
= NVMe interface is ‘naturally’ async -open = nvme_ns_chr_open,
. i) .release = nvme_ns_chr_release,
= Host submit command into NVMe SQ at time T; .unlocked_ioctl = nvme_ns_chr_mc{l.
. . . = compat _ptr 1octl,
Device sends back completion separately in NVMe e o che paves Gigil)
CQatT+AT

= Driver implements sync-over-async by forcing
submitter go into blocking-wait

. . NVMe Driver NVMe Device
= Uring-cmd based operation: lorine NV Driver [NVWie Device

= Driver decouples completion from submission; no fop->uring_cmd(io_uring_cmd*)
blocking-wait P

= Async-update-to-user-memory problem

I Ebmlt into SQ+

return -EIOCBQUEUED

. General problem if ioctl-cmd has some fields which need < B
to be updated on 1/0O completion o . o Completion into CQ
. Such fields cannot be touched if completion is arriving in '°—“””g:cm‘_‘—c"mp"ate—'“—t“k{"’—”” I < —
interrupt-context! 4"3—““" , driver_cb) _
= Thankfully there is task-work infra in Kernel : e '
' driver_ch(io_uring_cmd *) i
- Driver sets up a callback to do all the update; passes that A e 4" Update user- |
toio_uring io_uring_cmd_done(io_uring_cmd*, ret) resident fields |
| —

] lo_uring sets up a task-work, that executes driver-defined .
callback ! Inuser context |

LINUX
PLUMBERS Example -

CON FE RENCE > September 20-24, 2021
truct nvme_urlng_;md {

= Read from /dev/ngOnl “u32 aectl_cnd;

__u32 unusedl;
void *argp;

Allocate and setup nvme nvme_passthru_read(struct io_uring *ring, void *buf)
passthru command .
struct lo_uring_sqe *sqe = NULL;
struct lo_uring_cqe *cqe = NULL;
; struct io_uring_cmd_sqe *csqe;
Prepare CSQE for uring-cmd struct nvme_passthru_cmd *ptcmd;
struct nvme_uring_cmd *ncmd;
int fd;

Setup passthrough ioctl & cmd fd = open(*/dev/ngonl®, 0 RDONLY);
pointer inside uring-cmd

ptemd = (struct nvme_passthru_cmd *)malloc(sizeof(struct nvme_passthru_cmd));
prepare_pt_cmd(ptcmd, buf);

! . [i g_get_sqge
] ! = (void *)sqge;
Tidbits for ZNS . Shir.fid = fd:
- ! ->hdr.opcode = IORING_OP_URING_CMD;
Async zone-reset L ->user_data .

= Zone-append at multi-QD [(void *) &csqe->pdu;
->10ctl_cmd = NVME_IOCTL_I064_CMD; |
(void *)ptcmd; ;

10_uring_submit(ring);
10_uring_wait_cqge(ring, &cge);

printf(“res=%d\n", cqe->res);
10_uring_cqe_seen(ring, cqe);
free(ptemd) ;

'ﬁlﬂ;la(gms Features for faster 1O

CON FE RENCE > September 20-24, 2021

= Async is first step

= Since NVMe is talking to io_uring, there is room for more

Register-files Reference fd once andreuse [] V]
SQpPoll Offload 10 submission V1 V]
Fixed-buffer Map 10 buffer once and reuse [V]
Async polling Interrupt-free completion V1

S Uring passthru: fixed buffer ‘Q

CON FE RENCE > September 20-24, 2021

. HOW flxed‘bUﬁer helpS int 1o _uring_register_buffers(struct 1o_uring *ring,
. o co "uct lovec *1lovecs,
= Pin once (pin_user_pages), reuse the buffer: reduce d nr_iovecs)

per-io cost for pin/unpin

= |o_uring_register() to pin N buffers upfront; basically
setup up bio_vec for these buffers

e

[

= Specify 10 (fixed-buffer opcode) by using any of the '\ Buffer)

pre-mapped buffer
= |0 Uring plumblng sqe = 1?_ur;nnget_sqe(rmg);
- csqe = (void *)sqe;

= New opcode IORING_OP_URING_CMD_FIXED _csqe->hdr.fd = fd; ‘

. BUfBe]E arFOregistered as before, and sqe->buf_index to be CARa-230ix - Dpcics "Bot | No-CHO_FIRED:
used for

->user_data x1234;

= Make the corresponding bio_vec accessible to driver s fuoilh *) ‘Scasa-sudas

) ->10ctl _cmd = NVME_IOCTL_I064 CMD;
= NVMe plumbing ->argp = (void *)ptend;

= |nstead of pin/unpin, talk to io_uring to reuse ‘previously
pinned’ buffer/bio_vec

= Same ioctl code; use uring_cmd info to choose between
regular/fixed-buffer

int 10 uring cmd import fixed({void *ubuf, unsigned long len,

int rw, struct 1ov_iter *iter, void *1oucmd)

=g Kernel 1/0 Polling ‘Q

CON FE RENCE > September 20-24, 2021

= Enables interrupt-free 10; particularly useful for ultra-low-latency storage

= \What we have

= Sync polling: submit 10 and spin for completion, in the same syscall; submit-spin
. Preadv2()/pwritev2() with RWF_HIPRI

= Hybrid polling — relax CPU by sleeping in between; submit-sleep-spin

= Async polling: decouple polling from submission; provides third choice (beyond spin and sleep) i.e.
submit more IO or execute app-specific logic

. io_uring setup with IORING_SETUP_POLL; all 10s to such ring are polled

= What we do not have
= joctl polling / passthru polling

LINUX
PLUMBERS

Uring passthru: async polling

CON FE RENCE > September 20-24, 2021

to_uring € @

(Polled) sa
“Choose | :‘s?ar'e';o'o'kvgr
| polled hctx E:\iofuringicmd H
U T L L L e T
Return
cookie

Core 0 Core 1
sctx

[]

L]

L]
hetx / r4

[
O
Ol
,

) O O ©
w0 O O O

Interrupt Interrupt
Enabled Disabled

gl \ O

Completion

lo_uring @ @

i Reap completion

M e e e ————
1Send cookie
blk_poll (cookie)
Poll respective NVMe CQ

¥ 3
hctx
L]
L]
v L 3|y
Nvme @
sQ
Nvme) @
cQ |
|
Interrupt Interrupt
Enabled Disabled

')

'.':'wa(gms Features for faster 10 Q

CON FE RENCE > September 20-24, 2021

= Now this looks better than before

Register-files Reference fd once and reuse V1

SQPoll Offload 10 submission V1 V1
Fixed-buffer Map 10 buffer once and reuse V1 V1
Async polling Interrupt-free completion V1 V1
Bio-cache In-kernel cache to reduce per-io alloc & free [v]

= And there is new entry in the table: bio-cache

L] Recently merged

L] Not IRQ safe, so currently for polled-10 path

L] For NVMe Passthru — we almost always do in-task completion; so that sorts applicability issue

= Passthru bio - currently allocated via bio_kmalloc() Move to bio-set based allocation for async path

= - How does it perform? Q

CON FE RENCE > September 20-24, 2021

4K randread, single job

250 .
Device saturated

200 at this point
v 150
(=W
S
¥ 100 - - -
50
0
1 2 4

Queue-depth

=== joctl uring-pt spdk uring-pt-poll

LINUX :
PLUMBERS What is where Q
CONFE RENCE > September 20-24, 2021

= NVMe Generic Device:

= Kernel support: nvme 5.13
" Nvme-cli: https://github.com/linux-nvme/nvme-cli/commit/7169d78c9ccc0835039dcb2ac6f48d4e697e5dcd

= Uring-cmd/async IOCTL:
= Mailing list: https://lore.kernel.org/linux-nvme/20210317221027.366780-1-axboe @kernel.dk/
= Refreshed version: https://git.kernel.dk/cgit/linux-block/log/?h=io uring-fops.v6

= NVMe passthru
= Async & fixed-buffer: https://lore.kernel.org/linux-nvme/20210805125539.66958-1-joshi.k@samsung.com/
= Passthru polling: in due course, https://github.com/joshkan/nvme-uring-pt

= Bio-cache: next step

https://github.com/linux-nvme/nvme-cli/commit/7169d78c9ccc0835039dcb2ac6f48d4e697e5dcd
https://lore.kernel.org/linux-nvme/20210317221027.366780-1-axboe@kernel.dk/
https://git.kernel.dk/cgit/linux-block/log/?h=io_uring-fops.v6
https://lore.kernel.org/linux-nvme/20210805125539.66958-1-joshi.k@samsung.com/
https://github.com/joshkan/nvme-uring-pt

LINUX
PLUMBERS Feedback Q
CON FE RENCE > September 20-24, 2021 @

= Are there ideas to further optimize the path? (e.g. anything for DMA)

