
LLVM Machine Code
Analyzer (llvm-mca)

Souradip Ghosh

Agenda

1.Background

2.Mechanics of llvm-mca

3.Using llvm-mca

4.Potential applications for current projects

Background: History and Motivation

● Development History:
○ Built at Sony to debug their internal instruction scheduling models

○ Merged with LLVM’s tools in early 2018 (LLVM 7/8)

● Motivations for llvm-mca
1:

○ Measure performance for certain blocks of code

○ Diagnose bottlenecks, examine resource pressure, calculate latency, etc.

○ Compete with Intel (IACA)

1 Andrea di Biagio, Matt Davis, LLVM Development. “llvm-mca - LLVM Machine Code Analyzer” LLVM 10, 2019.

Agenda

1.Background

2.Mechanics of llvm-mca

3.Using llvm-mca

4.Potential applications for current projects

● llvm-mca simulates the execution of a

block of assembly
○ Uses available LLVM backend that

supports out-of-order execution

Mechanics: Static Analysis

1 Figure 1. Laukemann et al., Automated Instruction Stream Throughput Prediction for Intel and AMD Microarchitectures (2018). https://arxiv.org/pdf/1809.00912.pdf

llvm-mca
starts here

Generic Port Model
1

foo.S
LLVM Target
Assembly
Parser

llvm::MCInst

LLVM
Backendllvm::mca::Pipelineoutput

https://arxiv.org/pdf/1809.00912.pdf

1 Figure 2. Laukemann et al., Automated Instruction Stream Throughput Prediction for Intel and AMD Microarchitectures (2018). https://arxiv.org/pdf/1809.00912.pdf

https://arxiv.org/pdf/1809.00912.pdf

Mechanics: Pipelining in llvm-mca

llvm::mca::Pipeline

Fetch Dispatch Execute Record Retire

1 Andrea di Biagio, Matt Davis. “Understanding the Performance of Code Using llvm-mca,” 2018 LLVM Developers’ Meeting.

1

Mechanics: Pipelining in llvm-mca

llvm::mca::Pipeline

Fetch Dispatch Execute Record Retire

1 Andrea di Biagio, Matt Davis. “Understanding the Performance of Code Using llvm-mca,” 2018 LLVM Developers’ Meeting.

1

X
● The fetching stage is assumed

by llvm-mca (no front-end)

● Dispatches occur in groups to
simulated schedulers based on the
dispatch width

● Recording occurs towards the end
of an instruction’s execution
○ Known as the “write back stage”

Mechanics: Pipelining in llvm-mca

llvm::mca::Pipeline

Fetch Dispatch Execute Record Retire

1 Andrea di Biagio, Matt Davis. “Understanding the Performance of Code Using llvm-mca,” 2018 LLVM Developers’ Meeting.

1

X
● Schedulers are simulated based on

specific architecture / CPU

● Memory instructions are performed
speculatively using a simulated LSUnit

● Other simulated units:
○ Register File Unit
○ Retire Control Unit

Mechanics: LLVM Backend and Scheduling Models

● llvm-mca models out-of-order
scheduling and execution

● LLVM API exists to select
instructions and schedule micro-ops
“out-of-order”

llvm::MIScheduler

llvm::SelectionDAG

LLVM
Backend

● This LLVM API works with llvm-mca
to generate a simulated scheduler
that resembles the given arch.

1 Dave Estes “SchedMachineModel: Adding and Optimizing a Subtarget,” (2014), Qualcomm. https://llvm.org/devmtg/2014-10/Slides/Estes-MISchedulerTutorial.pdf

1

https://llvm.org/devmtg/2014-10/Slides/Estes-MISchedulerTutorial.pdf

Agenda

1.Background

2.Mechanics of llvm-mca

3.Using llvm-mca

4.Potential applications for current projects

Example function foo: Assembly generated (-O3, skylake)

Using llvm-mca: Example

llvm-mca is available on Godbolt’s Compiler Explorer: https://bit.ly/2Y685oQ

https://bit.ly/2Y685oQ

Using llvm-mca: Command Line

● Default flags includes the following: -instruction-info,
-resource-pressure, -summary-view

llvm-mca -mcpu=skylake foo.S

● We’ll explore these performance statistics/views:

llvm-mca -mcpu=skylake -timeline bar.S

llvm-mca -mcpu=skylake -bottleneck-analysis baz.S

● LSUnit is naive
○ No alias analysis is performed (would be an optimization)

○ Knows “nothing about cache hierarchy” 1

● Simulation by llvm-mca is not always realistic
○ Simulation over an architecture/CPU not the same as real performance

○ Modeling only out-of-order scheduler leaves out the front-end

● llvm-mca is relatively new
○ Documentation, testing, benchmarks are lacking compared to IACA

○ Some statistics and views (register related) are not clear to developers

○ Sometimes you have to resort to LLVM email threads: https://bit.ly/2Z6O5E1

Using llvm-mca: Drawbacks

1 Andrea di Biagio, LLVM Development. “llvm-mca: a static performance analysis tool”, https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html, 2018.

https://bit.ly/2Z6O5E1
https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html

Agenda

1.Background

2.Mechanics of llvm-mca

3.Using llvm-mca

4.Potential applications for current projects

Applications for Current Projects (Interweaving)

● How can we use llvm-mca?
○ Fibers --- Measure the performance of existing assembly (existing fibers

code/assembly written directly in Nautilus?)

○ Code injection problem (my project) --- call injections may be simple

enough to analyze, but llvm-mca could analyze assembly injections

● LLVM developers have reworked llvm-mca to be more modular
○ New pipeline designs could open possibilities to analyze the front-end

(fetching, decoding, etc.)

