LLVM Machine Code

Analyzer (llvm-mca)
Souradip Ghosh

i \\ o=
i N\ '
/ :\ y

Agenda

1.Background
2.Mechanics of [lvm-mca
3.Using llvm-mca

4.Potential applications for current projects

Background: History and Motivation

e Development History:

o Built at Sony to debug their internal instruction scheduling models
o Merged with LLVM's tools in early 2018 (LLVM 7/8)

e Motivations for llvm-mca':

o Measure performance for certain blocks of code
o Diagnose bottlenecks, examine resource pressure, calculate latency, etc.
o Compete with Intel (IACA)

" Andrea di Biagio, Matt Davis, LLVM Development. “llvm-mca - LLVM Machine Code Analyzer” LLVM 10, 2019.

Agenda
1.Background

2.Mechanics of llvm-mca
3.Using llvm-mca

4.Potential applications for current projects

Generic Port Model?

Mechanics: Static Analysis [trucron Gache]

| Decode |

e |lvm-mca simulates the execution of a

[Micro-Operation Queue|
block of assembly In-Order
. Out-of-Order
o Uses available LLVM backend that llvm-mca | — s s dedader |

. starts here
supports out-of-order execution

Port O| | Port1 Port N
LLVM Target |D(.UN1T| |D(.UN1T|

[foo.S] —> Assembly —> [llvm: :MCInst] | r |
EX. UNIT EX. UNIT -E(UNIT

Parser
¢ | Memory Control |
LLVM
[output } -+ [llvm: :mca: :Pipeline} -+ [Backend } Data Caches

' Figure 1. Laukemann et al., Automated Instruction Stream Throughput Prediction for Intel and AMD Microarchitectures (2018). https:/arxiv.org/pdf/1809.00912.pdf

https://arxiv.org/pdf/1809.00912.pdf

[32kBL1I-Cache |
\ 128bit

[Predecode |

[Instruction Queue |

Micro-op /
I Decode | L0 Cache
[Decoded Micro-Operation Queue |
In-Order
Out-of-Order
[Out-of-Order Scheduler |
[Port0 | [Port1 || Port5 || Port6 || Port2 || Port3 || Port4 || Port7 |
[aw [aw J[auv [aw |[roao |[roap | [store | [simereacu|
[2npranci| [rastiea | [mastiea | [1sterancu| [acu | [acu |
| AVX DIV | [AVX FMA] I AVX SHUF I
I AVX FMA I | AVX MUL I I AVX512 FMA I
[axmur | [avxaop | [avseaop |
[avxaop | [avxaw | [avxszmu |
[avxaw | [axswer | [avospaw |

[Memory Control |

1x512bit X\ \\ 2x512 bit

. —
{MP Unified 12 Cache |5 e P53

32kB L1 D-Cache

' Figure 2. Laukemann et al., Automated Instruction Stream Throughput Prediction for Intel and AMD Microarchitectures (2018). https:/arxiv.org/pdf/1809.00912.pdf

https://arxiv.org/pdf/1809.00912.pdf

Mechanics: Pipelining in llvm-mca

1

{ llvm: :mca: :Pipeline J

[Fetch] [Dispatch] [Execute] [Record 1 Retire

" Andrea di Biagio, Matt Davis. “Understanding the Performance of Code Using llvm-mca,” 2018 LLVM Developers’ Meeting.

Mechanics: Pipelining in llvm-mca

{ llvm: :mca: :Pipeline }

FeijCh [Dispatch} [Execute } [Record 1 Retire

e The fetching stage is assumed e Recording occurs towards the end
by llvm-mca (no front-end) of an instruction’s execution
o Known as the “write back stage”

e Dispatches occur in groups to
simulated schedulers based on the
dispatch width

" Andrea di Biagio, Matt Davis. “Understanding the Performance of Code Using llvm-mca,” 2018 LLVM Developers’ Meeting.

Mechanics: Pipelining in llvm-mca

1

{ llvm: :mca: :Pipeline }

FeijCh [Dispatch} [Execute } [Record 1 Retire

e Schedulers are simulated based on e Other simulated units:

specific architecture / CPU o Register File Unit
o Retire Control Unit

e Memory instructions are performed
speculatively using a simulated LSUnit

" Andrea di Biagio, Matt Davis. “Understanding the Performance of Code Using llvm-mca,” 2018 LLVM Developers’ Meeting.

Mechanics: LLVM Backend and Scheduling Models

1
[llvm: :MIScheduler]

~ LLVM
V' Backend

[llvm: :SelectionDAG]

e llvm-mca models out-of-order e This LLVM API works with llvm-mca
scheduling and execution to generate a simulated scheduler

e LLVM API exists to select that resembles the given arch.

instructions and schedule micro-ops
“out-of-order”

' Dave Estes “SchedMachineModel: Adding and Optimizing a Subtarget,” (2014), Qualcomm. https://llvm.org/devmtg/2014-10/Slides/Estes-MISchedulerTutorial.pdf

https://llvm.org/devmtg/2014-10/Slides/Estes-MISchedulerTutorial.pdf

Agenda
1.Background

2.Mechanics of llvm-mca
3.Using llvm-mca

4.Potential applications for current projects

Using llvm-mca: Example

Example function foo: Assembly generated (-O3, skylake)

double foo(double a) vaddsd %xmm@, %xmmO, %xmml
{ vmulsd 2%xmm@, %xmm@, %xmmo

return (a + a) / (a * a); vdivsd %xmm@, %xmml, %xmmo
¥ retq

llvm-mca is available on Godbolt's Compiler Explorer: https://bit.ly/2Y68500

https://bit.ly/2Y685oQ

Using llvm-mca: Command Line

e Default flags includes the following: -instruction-info,
-resource-pressure, -summary-view

llvm-mca -mcpu=skylake foo.S

e We'll explore these performance statistics/views:
llvm-mca -mcpu=skylake -timeline bar.S

llvm-mca -mcpu=skylake -bottleneck-analysis baz.S

Using llvm-mca: Drawbacks

e LSUnitis naive

o No alias analysis is performed (would be an optimization)
o Knows “nothing about cache hierarchy”’

e Simulation by llvm-mca is not always realistic

o Simulation over an architecture/CPU not the same as real performance
o Modeling only out-of-order scheduler leaves out the front-end

e llvm-mca is relatively new
o Documentation, testing, benchmarks are lacking compared to IACA
o Some statistics and views (register related) are not clear to developers
o Sometimes you have to resort to LLVM email threads: https://bit.ly/2Z605E1

' Andrea di Biagio, LLVM Development. “llvm-mca: a static performance analysis tool”, https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html, 2018.

https://bit.ly/2Z6O5E1
https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html

Agenda
1.Background

2.Mechanics of llvm-mca

3.Using llvm-mca

4.Potential applications for current projects

Applications for Current Projects (Interweaving)

e How can we use llvm-mca?
o Fibers --- Measure the performance of existing assembly (existing fibers
code/assembly written directly in Nautilus?)
o Code injection problem (my project) --- call injections may be simple
enough to analyze, but llvm-mca could analyze assembly injections

e LLVM developers have reworked llvm-mca to be more modular
o New pipeline designs could open possibilities to analyze the front-end
(fetching, decoding, etc.)

