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Background: History and Motivation

e Development History:

o Built at Sony to debug their internal instruction scheduling models
o Merged with LLVM's tools in early 2018 (LLVM 7/8)

e Motivations for llvm-mca':

o Measure performance for certain blocks of code
o Diagnose bottlenecks, examine resource pressure, calculate latency, etc.
o Compete with Intel (IACA)

" Andrea di Biagio, Matt Davis, LLVM Development. “llvm-mca - LLVM Machine Code Analyzer” LLVM 10, 2019.
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Generic Port Model?

Mechanics: Static Analysis [ trucron Gache ]
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' Figure 1. Laukemann et al., Automated Instruction Stream Throughput Prediction for Intel and AMD Microarchitectures (2018). https:/arxiv.org/pdf/1809.00912.pdf
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' Figure 2. Laukemann et al., Automated Instruction Stream Throughput Prediction for Intel and AMD Microarchitectures (2018). https:/arxiv.org/pdf/1809.00912.pdf
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Mechanics: Pipelining in llvm-mca

1

{ llvm: :mca: :Pipeline J

[ Fetch] [Dispatch] [ Execute ] [ Record 1 Retire

" Andrea di Biagio, Matt Davis. “Understanding the Performance of Code Using llvm-mca,” 2018 LLVM Developers’ Meeting.



Mechanics: Pipelining in llvm-mca

{ llvm: :mca: :Pipeline }

FeijCh [Dispatch} [ Execute } [ Record 1 Retire

e The fetching stage is assumed e Recording occurs towards the end
by llvm-mca (no front-end) of an instruction’s execution
o Known as the “write back stage”

e Dispatches occur in groups to
simulated schedulers based on the
dispatch width

" Andrea di Biagio, Matt Davis. “Understanding the Performance of Code Using llvm-mca,” 2018 LLVM Developers’ Meeting.



Mechanics: Pipelining in llvm-mca

1

{ llvm: :mca: :Pipeline }

FeijCh [Dispatch} [ Execute } [ Record 1 Retire

e Schedulers are simulated based on e Other simulated units:

specific architecture / CPU o Register File Unit
o Retire Control Unit

e Memory instructions are performed
speculatively using a simulated LSUnit

" Andrea di Biagio, Matt Davis. “Understanding the Performance of Code Using llvm-mca,” 2018 LLVM Developers’ Meeting.



Mechanics: LLVM Backend and Scheduling Models

1
[ llvm: :MIScheduler ]

~ LLVM
V' Backend

[ llvm: :SelectionDAG ]

e llvm-mca models out-of-order e This LLVM API works with llvm-mca
scheduling and execution to generate a simulated scheduler

e LLVM API exists to select that resembles the given arch.

instructions and schedule micro-ops
“out-of-order”

' Dave Estes “SchedMachineModel: Adding and Optimizing a Subtarget,” (2014), Qualcomm. https://llvm.org/devmtg/2014-10/Slides/Estes-MISchedulerTutorial.pdf


https://llvm.org/devmtg/2014-10/Slides/Estes-MISchedulerTutorial.pdf
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Using llvm-mca: Example

Example function foo: Assembly generated (-O3, skylake)

double foo(double a) vaddsd %xmm@, %xmmO, %xmml
{ vmulsd 2%xmm@, %xmm@, %xmmo

return (a + a) / (a * a); vdivsd %xmm@, %xmml, %xmmo
¥ retq

llvm-mca is available on Godbolt's Compiler Explorer: https://bit.ly/2Y68500



https://bit.ly/2Y685oQ

Using llvm-mca: Command Line

e Default flags includes the following: -instruction-info,
-resource-pressure, -summary-view

llvm-mca -mcpu=skylake foo.S

e We'll explore these performance statistics/views:
llvm-mca -mcpu=skylake -timeline bar.S

llvm-mca -mcpu=skylake -bottleneck-analysis baz.S



Using llvm-mca: Drawbacks

e LSUnitis naive

o No alias analysis is performed (would be an optimization)
o Knows “nothing about cache hierarchy”’

e Simulation by llvm-mca is not always realistic

o Simulation over an architecture/CPU not the same as real performance
o Modeling only out-of-order scheduler leaves out the front-end

e llvm-mca is relatively new
o Documentation, testing, benchmarks are lacking compared to IACA
o Some statistics and views (register related) are not clear to developers
o Sometimes you have to resort to LLVM email threads: https://bit.ly/2Z605E1

' Andrea di Biagio, LLVM Development. “llvm-mca: a static performance analysis tool”, https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html, 2018.



https://bit.ly/2Z6O5E1
https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
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Applications for Current Projects (Interweaving)

e How can we use llvm-mca?
o Fibers --- Measure the performance of existing assembly (existing fibers
code/assembly written directly in Nautilus?)
o Code injection problem (my project) --- call injections may be simple
enough to analyze, but llvm-mca could analyze assembly injections

e LLVM developers have reworked llvm-mca to be more modular
o New pipeline designs could open possibilities to analyze the front-end
(fetching, decoding, etc.)



