The new ext4 filesystem: current status and future plans

Avantika Mathur, Mingming Cao, Suparna Bhattacharya
IBM Linux Technology Center

mathur@us.ibm.com,

cmm@us.ibm.com,

suparna@in.ibm.com

Andreas Dilger, Alex Tomas
Cluster Filesystem Inc.

adilger@clusterfs.com,

alex@clusterfs.com

Laurent Vivier
Bull S.A.S.

laurent.vivier@bull.net

Abstract

Ext3 has been the most widely used general Linux®
filesystem for many years. In keeping with increasing
disk capacities and state-of-the-art feature requirements,
the next generation of the ext3 filesystem, ext4, was cre-
ated last year. This new filesystem incorporates scalabil-
ity and performance enhancements for supporting large
filesystems, while maintaining reliability and stability.
Ext4 will be suitable for a larger variety of workloads
and is expected to replace ext3 as the “Linux filesys-
tem.”

In this paper we will first discuss the reasons for start-
ing the ext4 filesystem, then explore the enhanced ca-
pabilities currently available and planned for ext4, dis-
cuss methods for migrating between ext3 and ext4, and
finally compare ext4 and other filesystem performance
on three classic filesystem benchmarks.

1 Introduction

Ext3 has been a very popular Linux filesystem due to its
reliability, rich feature set, relatively good performance,
and strong compatibility between versions. The conser-
vative design of ext3 has given it the reputation of being
stable and robust, but has also limited its ability to scale
and perform well on large configurations.

With the pressure of increasing capabilities of new hard-
ware and online resizing support in ext3, the require-
ment to address ext3 scalability and performance is
more urgent than ever. One of the outstanding limits
faced by ext3 today is the 16 TB maximum filesystem

size. Enterprise workloads are already approaching this
limit, and with disk capacities doubling every year and
1 TB hard disks easily available in stores, it will soon be
hit by desktop users as well.

To address this limit, in August 2006, we posted a series
of patches introducing two key features to ext3: larger
filesystem capacity and extents mapping. The patches
unavoidably change the on-disk format and break for-
wards compatibility. In order to maintain the stability of
ext3 for its massive user base, we decided to branch to
ext4 from ext3.

The primary goal of this new filesystem is to address
scalability, performance, and reliability issues faced by
ext3. A common question is why not use XFS or start
an entirely new filesystem from scratch? We want to
give the large number of ext3 users the opportunity to
easily upgrade their filesystem, as was done from ext2
to ext3. Also, there has been considerable investment in
the capabilities, robustness, and reliability of ext3 and
e2fsck. Ext4 developers can take advantage of this pre-
vious work, and focus on adding advanced features and
delivering a new scalable enterprise-ready filesystem in
a short time frame.

Thus, ext4 was born. The new filesystem has been in
mainline Linux since version 2.6.19. As of the writing
of this paper, the filesystem is marked as developmen-
tal, titled ext4dev, explicitly warning users that it is not
ready for production use. Currently, extents and 48-bit
block numbers are included in ext4, but there are many
new filesystem features in the roadmap that will be dis-
cussed throughout this paper. The current ext4 develop-
ment git tree is hosted at git://git.kernel.org/

e 2] o

22 e The new ext4 filesystem: current status and future plans

pub/scm/linux/kernel/git/tytso/ext4. Up-
to-date ext4 patches and feature discussions can be
found at the ext4 wiki page, http://ext4.wiki.
kernel.oraq.

Some of the features in progress could possibly continue
to change the on-disk layout. Ext4 will be converted
from development mode to stable mode once the layout
has been finalized. At that time, ext4 will be available
for general use by all users in need of a more scalable
and modern version of ext3. In the following three sec-
tions we will discuss new capabilities currently included
in or planned for ext4 in the areas of scalability, frag-
mentation, and reliability.

2 Scalability enhancements

The first goal of ext4 was to become a more scalable
filesystem. In this section we will discuss the scalability
features that will be available in ext4.

2.1 Large filesystem

The current 16 TB filesystem size limit is caused by the
32-bit block number in ext3. To enlarge the filesystem
limit, the straightforward method is to increase the num-
ber of bits used to represent block numbers and then fix
all references to data and metadata blocks.

Previously, there was an extents[3] patch for ext3 with
the capacity to support 48-bit physical block numbers.
In ext4, instead of just extending the block numbers to
64-bits based on the current ext3 indirect block map-
ping, the ext4 developers decided to use extents map-
ping with 48-bit block numbers. This both increases
filesystem capacity and improves large file efficiency.
With 48-bit block numbers, ext4 can support a maxi-
mum filesystem size up to 2(48+12) = 260 pytes (1 EB)
with 4 KB block size.

After changing the data block numbers to 48-bit,
the next step was to correct the references to meta-
data blocks correspondingly. Metadata is present in
the superblock, the group descriptors, and the jour-
nal. New fields have been added at the end of the
superblock structure to store the most significant 32
bits for block-counter variables, s_free_blocks_count,
s_blocks_count, and s_r_blocks_count, extending them
to 64 bits. Similarly, we introduced new 32-bit fields at

the end of the block group descriptor structure to store
the most significant bits of 64-bit values for bitmaps and
inode table pointers.

Since the addresses of modified blocks in the filesys-
tem are logged in the journal, the journaling block layer
(JBD) is also required to support at least 48-bit block ad-
dresses. Therefore, JBD was branched to JBD2 to sup-
port more than 32-bit block numbers at the same time
ext4 was forked. Although currently only ext4 is using
JBD2, it can provide general journaling support for both
32-bit and 64-bit filesystems.

One may question why we chose 48-bit rather than full
64-bit support. The 1 EB limit will be sufficient for
many years. Long before this limit is hit there will be
reliability issues that need to be addressed. At current
speeds, a 1 EB filesystem would take 119 years to finish
one full e2fsck, and 65536 times that for a 264 blocks (64
ZB) filesystem. Overcoming these kind of reliability is-
sues is the priority of ext4 developers before addressing
full 64-bit support and is discussed later in the paper.

2.1.1 Future work

After extending the limit created by 32-bit block num-
bers, the filesystem capacity is still restricted by the
number of block groups in the filesystem. In ext3, for
safety concerns all block group descriptors copies are
kept in the first block group. With the new uninitial-
ized block group feature discussed in section 4.1 the
new block group descriptor size is 64 bytes. Given the
default 128 MB(2%’ bytes) block group size, ext4 can
have at most 27 /64 = 22! block groups. This limits the
entire filesystem size to 22! x 227 = 2*8 bytes or 256TB.

The solution to this problem is to use the metablock
group feature (META_BG), which is already in ext3
for all 2.6 releases. With the META_BG feature, ext4
filesystems are partitioned into many metablock groups.
Each metablock group is a cluster of block groups
whose group descriptor structures can be stored in a sin-
gle disk block. For ext4 filesystems with 4 KB block
size, a single metablock group partition includes 64
block groups, or 8 GB of disk space. The metablock
group feature moves the location of the group descrip-
tors from the congested first block group of the whole
filesystem into the first group of each metablock group
itself. The backups are in the second and last group of
each metablock group. This increases the 22! maximum

ext4_extent structure
95 47 31 0

physical block # logical block #

s\
[[uninitialized extent flag_| [length |

ext4_extent_header ext4_extent_idx

eh_magic ei_block
eh_entries ei_leaf
eh_max ei_leaf hi
eh_depth ei_unused

eh_generation

Figure 1: Ext4 extents, header and index structures

block groups limit to the hard limit 232, allowing support
for the full 1 EB filesystem.

2.2 Extents

The ext3 filesystem uses an indirect block mapping
scheme providing one-to-one mapping from logical
blocks to disk blocks. This scheme is very efficient for
sparse or small files, but has high overhead for larger
files, performing poorly especially on large file delete
and truncate operations [3].

As mentioned earlier, extents mapping is included in
ext4. This approach efficiently maps logical to physical
blocks for large contiguous files. An extent is a single
descriptor which represents a range of contiguous phys-
ical blocks. Figure 1 shows the extents structure. As
we discussed in previously, the physical block field in
an extents structure takes 48 bits. A single extent can
represent 2> contiguous blocks, or 128 MB, with 4 KB
block size. The MSB of the extent length is used to flag
uninitialized extents, used for the preallocation feature
discussed in Section 3.1.

Four extents can be stored in the ext4 inode structure
directly. This is generally sufficient to represent small
or contiguous files. For very large, highly fragmented,
or sparse files, more extents are needed. In this case
a constant depth extent tree is used to store the extents
map of a file. Figure 2 shows the layout of the extents
tree. The root of this tree is stored in the ext4 inode
structure and extents are stored in the leaf nodes of the
tree.

Each node in the tree starts with an extent header (Fig-
ure 1), which contains the number of valid entries in

2007 Linux Symposium, Volume Two e 23

leaf nodes
ext4_inode disk blocks
= . -_node header
index node
extent
—
i_block Py >
extent indg/
eh_header extent
\~
oot 7| [
.
extent index
extent
1 —»
——
\
extent
—— >

Figure 2: Ext4 extent tree layout

the node, the capacity of entries the node can store, the
depth of the tree, and a magic number. The magic num-
ber can be used to differentiate between different ver-
sions of extents, as new enhancements are made to the
feature, such as increasing to 64-bit block numbers.

The extent header and magic number also add much-
needed robustness to the on-disk structure of the data
files. For very small filesystems, the block-mapped files
implicitly depended on the fact that random corruption
of an indirect block would be easily detectable, because
the number of valid filesystem blocks is a small sub-
set of a random 32-bit integer. With growing filesystem
sizes, random corruption in an indirect block is by itself
indistinguishable from valid block numbers.

In addition to the simple magic number stored in the
extent header, the tree structure of the extent tree
can be verified at runtime or by e2fsck in several
ways. The ext4_extent_header has some internal con-
sistency (eh_entries and eh_max) that also depends on
the filesystem block size. eh_depth decreases from the
root toward the leaves. The ext4_extent entries in a leaf
block must have increasing ee_block numbers, and must
not overlap their neighbors with ee_len. Similarly, the
extd_extent_idx also needs increasing ei_block values,
and the range of blocks that an index covers can be veri-
fied against the actual range of blocks in the extent leaf.

Currently, extents mapping is enabled in ext4 with the
extents mount option. After the filesystem is mounted,

24 e The new ext4 filesystem: current status and future plans

any new files will be created with extent mapping. The
benefits of extent maps are reflected in the performance
evaluation Section 7.

2.2.1 Future work

Extents are not very efficient for representing sparse or
highly fragmented files. For highly fragmented files, we
could introduce a new type of extent, a block-mapped
extent. A different magic number, stored in the extent
header, distinguishes the new type of leaf block, which
contains a list of allocated block numbers similar to an
ext3 indirect block. This would give us the increased ro-
bustness of the extent format, with the block allocation
flexibility of the block-mapped format.

In order to improve the robustness of the on-disk data,
there is a proposal to create an “extent tail” in the extent
blocks, in addition to the extent header. The extent tail
would contain the inode number and generation of the
inode that has allocated the block, and a checksum of
the extent block itself (though not the data). The check-
sum would detect internal corruption, and could also de-
tect misplaced writes if the block number is included
therein. The inode number could be used to detect
corruption that causes the tree to reference the wrong
block (whether by higher-level corruption, or misplaced
writes). The inode number could also be used to recon-
struct the data of a corrupted inode or assemble a deleted
file, and also help in doing reverse-mapping of blocks
for defragmentation among other things.

2.3 Large files

In Linux, file size is calculated based on the i_blocks
counter value. However, the unit is in sectors (512
bytes), rather than in the filesystem block size (4096
bytes by default). Since ext4’s i_blocks is a 32-bit vari-
able in the inode structure, this limits the maximum file
size in ext4 to 232 % 512 bytes = 2*! bytes = 2 TB. This
is a scalability limit that ext3 has planned to break for a
while.

The solution for ext4 is quite straightforward. The
first part is simply changing the i_blocks units in the
ext4 inode to filesystem blocks. An ROCOMPAT fea-
ture flag HUGE_FILE is added in ext4 to signify that
the i_blocks field in some inodes is in units of filesys-
tem block size. Those inodes are marked with a flag

EXT4_HUGE_FILE_FL, to allow existing inodes to
keep i_blocks in 512-byte units without requiring a full
filesystem conversion. In addition, the i_blocks variable
is extended to 48 bits by using some of the reserved in-
ode fields. We still have the limitation of 32 bit logi-
cal block numbers with the current extent format, which
limits the file size to 16TB. With the flexible extents for-
mat in the future (see Section 2.2.1), we may remove
that limit and fully use the 48-bit i_blocks to enlarge the
file size even more.

2.4 Large number of files

Some applications already create billions of files today,
and even ask for support for trillions of files. In theory,
the ext4 filesystem can support billions of files with 32-
bit inode numbers. However, in practice, it cannot scale
to this limit. This is because ext4, following ext3, still
allocates inode tables statically. Thus, the maximum
number of inodes has to be fixed at filesystem creation
time. To avoid running out of inodes later, users often
choose a very large number of inodes up-front. The con-
sequence is unnecessary disk space has to be allocated
to store unused inode structures. The wasted space be-
comes more of an issue in ext4 with the larger default
inode. This also makes the management and repair of
large filesystems more difficult than it should be. The
uninitialized group feature (Section 4.1) addresses this
issue to some extent, but the problem still exists with
aged filesystems in which the used and unused inodes
can be mixed and spread across the whole filesystem.

Ext3 and ext4 developers have been thinking about sup-
porting dynamic inode allocation for a while [9, 3].
There are three general considerations about the dy-
namic inode table allocation:

e Performance: We need an efficient way to translate
inode number to the block where the inode struc-
ture is stored.

e Robustness: e2fsck should be able to locate inode
table blocks scattered across the filesystem, in the
case the filesystem is corrupted.

e Compatibility: We need to handle the possible in-
ode number collision issue with 64-bit inode num-
bers on 32-bit systems, due to overflow.

These three requirements make the design challenging.

2007 Linux Symposium, Volume Two e 25

63 50 18 3 0
32-bit block group #

15-bit relative | 4-bit
block # offset

Figure 3: 64-bit inode layout

With dynamic inode tables, the blocks storing the inode
structure are no longer at a fixed location. One way to
efficiently map the inode number to the block storing
the corresponding inode structure, is encoding the block
number into the inode number directly, similar to what is
done in XFS. This implies the use of 64-bit inode num-
bers. The low four to five bits of the inode number store
the offset bits within the inode table block. The rest
store the 32-bit block group number as well as 15-bit
relative block number within the group, shown in Fig-
ure 3. Then, a cluster of contiguous inode table blocks
(ITBC) can be allocated on demand. A bitmap at the
head of the ITBC would be used to keep track of the
free and used inodes, allowing fast inode allocation and
deallocation.

In the case where the filesystem is corrupted, the ma-
jority of inode tables could be located by checking the
directory entries. To further address the reliability con-
cern, a magic number could be stored at the head of the
ITBC, to help e2fsck to recognize this metadata block.

Relocating inodes becomes tricky with this block-
number-in-inode-number proposal. If the filesystem is
resized or defragmented, we may have to change the lo-
cation of the inode blocks, which would require chang-
ing all references to that inode number. The proposal
to address this concern is to have a per-group “inode
exception map” that translates an old block/inode num-
ber into a new block number where the relocated inode
structure is actually stored. The map will usually be
empty, unless the inode was moved.

One concern with the 64-bit inode number is the possi-
ble inode number collision with 32-bit applications, as
applications might still be using 32-bit stat() to access
inode numbers and could break. Investigation is under-
way to see how common this case is, and whether most
applications are currently fixed to use the 64-bit stat64().
One way to address this concern is to generate 32-bit
inode numbers on 32-bit platforms. Seventeen bits is
enough to represent block group numbers on 32-bit ar-
chitectures, and we could limit the inode table blocks
to the first 2!° blocks of a block group to construct the

32-bit inode number. This way user applications will be
ensured of getting unique inode numbers on 32-bit plat-
forms. For 32-bit applications running on 64-bit plat-
forms, we hope they are fixed by the time ext4 is in pro-
duction, and this only starts to be an issue for filesystems
over 1TB in size.

In summary, dynamic inode allocation and 64-bit inode
numbers are needed to support large numbers of files in
ext4. The benefits are obvious, but the changes to the
on-disk format may be intrusive. The design details are
still under discussion.

2.5 Directory scalability

The maximum number of subdirectories contained in a
single directory in ext3 is 32,000. To address directory
scalability, this limit will be eliminated in ext4 providing
unlimited sub-directory support.

In order to better support large directories with many en-
tries, the directory indexing feature[6] will be turned on
by default in ext4. By default in ext3, directory entries
are still stored in a linked list, which is very inefficient
for directories with large numbers of entries. The di-
rectory indexing feature addresses this scalability issue
by storing directory entries in a constant depth HTree
data structure, which is a specialized BTree-like struc-
ture using 32-bit hashes. The fast lookup time of the
HTree significantly improves performance on large di-
rectories. For directories with more than 10,000 files,
improvements were often by a factor of 50 to 100 [3].

2.5.1 Future work

While the HTree implementation allowed the ext2 direc-
tory format to be improved from linear to a tree search
compatibly, there are also limitations to this approach.
The HTree implementation has a limit of 510 * 511 4
KB directory leaf blocks (approximately 25M 24-byte
filenames) that can be indexed with a 2-level tree. It
would be possible to change the code to allow a 3-level
HTree. There is also currently a 2 GB file size limit on
directories, because the code for using the high 32-bits
for i_size on directories was not implemented when the
2 GB limit was fixed for regular files.

Because the hashing used to find filenames in indexed
directories is essentially random compared to the lin-
ear order in which inodes are allocated, we end up do-
ing random seeks around the disk when accessing many

26 e The new ext4 filesystem: current status and future plans

inodes in a large directory. We need to have readdir
in hash-index order because directory entries might be
moved during the split of a directory leaf block, so to
satisfy POSIX requirements we can only safely walk the
directory in hash order.

To address this problem, there is a proposal to put the
whole inode into the directory instead of just a directory
entry that references a separate inode. This avoids the
need to seek to the inode when doing a readdir, because
the whole inode has been read into memory already in
the readdir step. If the blocks that make up the directory
are efficiently allocated, then reading the directory also
does not require any seeking.

This would also allow dynamic inode allocation, with
the directory as the “container” of the inode table. The
inode numbers would be generated in a similar manner
as previously discussed (Section 2.4), so that the block
that an inode resides in can be located directly from
the inode number itself. Hard linked files imply that
the same block is allocated to multiple directories at the
same time, but this can be reconciled by the link count
in the inode itself.

We also need to store one or more file names in the in-
ode itself, and this can be done by means of an extended
attribute that uses the directory inode number as the EA
name. We can then return the name(s) associated with
that inode for a single directory immediately when do-
ing readdir, and skip any other name(s) for the inode that
belong to hard links in another directory. For efficient
name-to-inode lookup in the directory, we would still
use a secondary tree similar to the current ext3 HTree
(though it would need an entry per name instead of per
directory block). But because the directory entries (the
inodes themselves) do not get moved as the directory
grows, we can just use disk block or directory offset or-
der for readdir.

2.6 Large inode and fast extended attributes

Ext3 supports different inode sizes. The inode size can
be set to any power-of-two larger than 128 bytes size up
to the filesystem block size by using the mke2fs -1 [inode
size] option at format time. The default inode structure
size is 128 bytes, which is already crowded with data
and has little space for new fields. In ext4, the default
inode structure size will be 256 bytes.

Ext4 Large Inode
Original
128-bit Inode

L27

i_extra_isize
i_padl
i_ctime_extra
i_mtime_extra
i_atime_extra
i_crtime
i_crtime_extra
i_version_hi

Fixed Fields

Fast Extended
Attributes

255

Figure 4: Layout of the large inode

In order to avoid duplicating a lot of code in the kernel
and e2fsck, the large inodes keep the same fixed layout
for the first 128-bytes, as shown in Figure 4. The rest
of the inode is split into two parts: a fixed-field section
that allows addition of fields common to all inodes, such
as nanosecond timestamps (Section 5), and a section for
fast extended attributes (EAs) that consumes the rest of
the inode.

The fixed-field part of the inode is dynamically sized,
based on what fields the current kernel knows about.
The size of this area is stored in each inode in the
i_extra_isize field, which is the first field beyond the
original 128-byte inode. The superblock also contains
two fields, s_min_extra_isize and i_want_extra_isize,
which allow down-level kernels to allocate a larger
i_extra_isize than it would otherwise do.

The s_min_extra_isize is the guaranteed mini-
mum amount of fixed-field space in each inode.
s_want_extra_isize is the desired amount of fixed-field
space for new inode, but there is no guarantee that
this much space will be available in every inode. A
ROCOMPAT feature flag EXTRA_ISIZE indicates
whether these superblock fields are valid. The ext4
code will soon also be able to expand i_extra_isize
dynamically as needed to cover the fixed fields, so
long as there is space available to store the fast EAs or
migrate them to an external EA block.

The remaining large inode space may be used for storing
EA data inside the inode. Since the EAs are already in
memory after the inode is read from disk, this avoids
a costly seek to external EA block. This can greatly

2007 Linux Symposium, Volume Two e 27

improve the performance of applications that are using
EAs, sometimes by a factor of 3—7 [4]. An external EA
block is still available in addition to the fast EA space,
which allows storing up to 4 KB of EAs for each file.

The support for fast EAs in large inodes has been avail-
able in Linux kernels since 2.6.12, though it is rarely
used because many people do not know of this capabil-
ity at mke2fs time. Since ext4 will have larger inodes,
this feature will be enabled by default.

There have also been discussions about breaking the 4
KB EA limit, in order to store larger or more EAs. It is
likely that larger single EAs will be stored in their own
inode (to allow arbitrary-sized EAs) and it may also be
that for many EAs they will be stored in a directory-like
structure, possibly leveraging the same code as regular
ext4 directories and storing small values inline.

3 Block allocation enhancements

Increased filesystem throughput is the premier goal for
all modern filesystems. In order to meet this goal, de-
velopers are constantly attempting to reduce filesystem
fragmentation. High fragmentation rates cause greater
disk access time affecting overall throughput, and in-
creased metadata overhead causing less efficient map-

ping.

There is an array of new features in line for ext4, which
take advantage of the existing extents mapping and are
aimed at reducing filesystem fragmentation by improv-
ing block allocation techniques.

3.1 Persistent preallocation

Some applications, like databases and streaming media
servers, benefit from the ability to preallocate blocks for
a file up-front (typically extending the size of the file
in the process), without having to initialize those blocks
with valid data or zeros. Preallocation helps ensure con-
tiguous allocation as far as possible for a file (irrespec-
tive of when and in what order data actually gets writ-
ten) and guaranteed space allocation for writes within
the preallocated size. It is useful when an application
has some foreknowledge of how much space the file will
require. The filesystem internally interprets the preallo-
cated but not yet initialized portions of the file as zero-
filled blocks. This avoids exposing stale data for each

block until it is explicitly initialized through a subse-
quent write. Preallocation must be persistent across re-
boots, unlike ext3 and ext4 block reservations [3].

For applications involving purely sequential writes, it is
possible to distinguish between initialized and uninitial-
ized portions of the file. This can be done by maintain-
ing a single high water mark value representing the size
of the initialized portion. However, for databases and
other applications where random writes into the preal-
located blocks can occur in any order, this is not suffi-
cient. The filesystem needs to be able to identify ranges
of uninitialized blocks in the middle of the file. There-
fore, some extent based filesystems, like XFS, and now
ext4, provide support for marking allocated but unini-
tialized extents associated with a given file.

Ext4 implements this by using the MSB of the extent
length field to indicate whether a given extent contains
uninitialized data, as shown in Figure 1. During reads,
an uninitialized extent is treated just like a hole, so that
the VFS returns zero-filled blocks. Upon writes, the ex-
tent must be split into initialized and uninitialized ex-
tents, merging the initialized portion with an adjacent
initialized extent if contiguous.

Until now, XFS, the other Linux filesystem that imple-
ments preallocation, provided an ioctl interface to ap-
plications. With more filesystems, including ext4, now
providing this feature, a common system-call interface
for fallocate and an associated inode operation have
been introduced. This allows filesystem-specific imple-
mentations of preallocation to be exploited by applica-
tions using the posix_fallocate API.

3.2 Delayed and multiple block allocation

The block allocator in ext3 allocates one block at a time
during the write operation, which is inefficient for larger
I/0. Since block allocation requests are passed through
the VFS layer one at a time, the underlying ext3 filesys-
tem cannot foresee and cluster future requests. This also
increases the possibility of file fragmentation.

Delayed allocation is a well-known technique in which
block allocations are postponed to page flush time,
rather than during the write() operation [3]. This method
provides the opportunity to combine many block allo-
cation requests into a single request, reducing possible

28 e The new ext4 filesystem: current status and future plans

fragmentation and saving CPU cycles. Delayed alloca-
tion also avoids unnecessary block allocation for short-
lived files.

Ext4 delayed allocation patches have been imple-
mented, but there is work underway to move this sup-
port to the VFS layer, so multiple filesystems can benefit
from the feature.

With delayed allocation support, multiple block alloca-
tion for buffered I/O is now possible. An entire extent,
containing multiple contiguous blocks, is allocated at
once rather than one block at a time. This eliminates
multiple calls to ext4_get_blocks and ext4_new_blocks
and reduces CPU utilization.

Ext4 multiple block allocation builds per-block group
free extents information based on the on-disk block
bitmap. It uses this information to guide the search for
free extents to satisfy an allocation request. This free
extent information is generated at filesystem mount time
and stored in memory using a buddy structure.

The performance benefits of delayed allocation alone
are very obvious, and can be seen in Section 7. In a
previous study [3], we have seen about 30% improved
throughput and 50% reduction in CPU usage with the
combined two features. Overall, delayed and multi-
ple block allocation can significantly improve filesystem
performance on large I/O.

There are two other features in progress that are built on
top of delayed and multiple block allocation, trying to
further reduce fragmentation:

e In-core Preallocation: Using the in-core free ex-
tents information, a more powerful in-core block
preallocation/reservation can be built. This further
improves block placement and reduces fragmenta-
tion with concurrent write workloads. An inode
can have a number of preallocated chunks, indexed
by the logical blocks. This improvement can help
HPC applications when a number of nodes write to
one huge file at very different offsets.

e [ocality Groups: Currently, allocation policy deci-
sions for individual file are made independently. If
the allocator had knowledge of file relationship, it
could intelligently place related files close together,
greatly benefiting read performance. The locality
groups feature clusters related files together by a

given attribute, such as SID or a combination of
SID and parent directory. At the deferred page-
flush time, dirty pages are written out by groups,
instead of by individual files. The number of non-
allocated blocks are tracked at the group-level, and
upon flush time, the allocator can try to preallocate
enough space for the entire group. This space is
shared by the files in the group for their individual
block allocation. In this way, related files are place
tightly together.

In summary, ext4 will have a powerful block allocation
scheme that can efficiently handle large block I/O and
reduce filesystem fragmentation with small files under
multi-threaded workloads.

3.3 Online defragmentation

Though the features discussed in this section improve
block allocation to avoid fragmentation in the first
place, with age, the filesystem can still become quite
fragmented. The ext4 online defragmentation tool,
eddefrag, has been developed to address this. This tool
can defragment individual files or the entire filesystem.
For each file, the tool creates a temporary inode and al-
locates contiguous extents to the temporary inode using
multiple block allocation. It then copies the original file
data to the page cache and flushes the dirty pages to the
temporary inode’s blocks. Finally, it migrates the block
pointers from the temporary inode to the original inode.

4 Reliability enhancements

Reliability is very important to ext3 and is one of the
reasons for its vast popularity. In keeping with this
reputation, ext4 developers are putting much effort into
maintaining the reliability of the filesystem. While it is
relatively easy for any filesystem designer to make their
fields 64-bits in size, it is much more difficult to make
such large amounts of space actually usable in the real
world.

Despite the use of journaling and RAID, there are invari-
ably corruptions to the disk filesystem. The first line of
defense is detecting and avoiding problems proactively
by a combination of robust metadata design, internal re-
dundancy at various levels, and built-in integrity check-
ing using checksums. The fallback will always be doing

2007 Linux Symposium, Volume Two e 29

integrity checking (fsck) to both detect and correct prob-
lems that will happen anyway.

One of the primary concerns with all filesystems is the
speed at which a filesystem can be validated and recov-
ered after corruption. With reasonably high-end RAID
storage, a full fsck of a 2TB ext3 filesystem can take
between 2 to 4 hours for a relatively “clean” filesystem.
This process can degrade sharply to many days if there
are large numbers of shared filesystem blocks that need
expensive extra passes to correct.

Some features, like extents, have already added to the
robustness of the ext4 metadata as previously described.
Many more related changes are either complete, in
progress, or being designed in order to ensure that ext4
will be usable at scales that will become practical in the
future.

4.1 Unused inode count and fast e2fsck

In e2fsck, the checking of inodes in pass 1 is by far the
most time consuming part of the operation. This re-
quires reading all of the large inode tables from disk,
scanning them for valid, invalid, or unused inodes, and
then verifying and updating the block and inode alloca-
tion bitmaps. The uninitialized groups and inode table
high watermark feature allows much of the lengthy pass
1 scanning to be safely skipped. This can dramatically
reduce the total time taken by e2fsck by 2 to 20 times,
depending on how full the filesystem is. This feature
can be enabled at mke2fs time or using tune2fs via the
-0 uninit_groups option.

With this feature, the kernel stores the number of un-
used inodes at the end of each block group’s inode table.
As a result, e2fsck can skip both reading these blocks
from disk, and scanning them for in-use inodes. In or-
der to ensure that the unused inode count is safe to use
by e2fsck, the group descriptor has a CRC16 checksum
added to it that allows validation of all fields therein.

Since typical ext3 filesystems use only in the neighbor-
hood of 1% to 10% of their inodes, and the inode alloca-
tion policy keeps a majority of those inodes at the start
of the inode table, this can avoid processing a large ma-
jority of the inodes and speed up the pass 1 processing.
The kernel does not currently increase the unused inodes
count, when files are deleted. This counter is updated on
every e2fsck run, so in the case where a block group had

fsck time vs. Inode Count

4500 =
4000 /
3500

3000 /

2500 /

/i/m v ext3 2.1M files

2000
/ A ext4 100kfiles
1500 /, > extd 2.1M files

O ext3: 0 files
& ext3 100k files

fsck time (sec)

1000

500 /N

——

0 * * i i i i +

0 05 10 15 20 25 30 35
Total Inode Count (millions)

Figure 5: e2fsck performance improvement with unini-
tialized block groups

many inodes deleted, e2fsck will be more efficient in the
next run.

Figure 5 shows that e2fsck time on ext3 grows linearly
with the total number of inodes in filesystem, regardless
of how many are used. On ext3, e2fsck takes the same
amount of time with zero used files as with 2.1 million
used files. In ext4, with the unused inode high water-
mark feature, the e2fsck time is only dependent on the
number of used inodes. As we can see, fsck of an ext4
filesystem with 100 000 used files takes a fraction of the
time ext3 takes.

In addition to the unused inodes count, it is possible
for mke2fs and e2fsck to mark a group’s block or in-
ode bitmap as uninitialized, so that the kernel does not
need to read them from disk when first allocating from
the group. Similarly, e2fsck does not need to read these
bitmaps from disk, though this does not play a major
role in performance improvements. What is more sig-
nificant is that mke2fs will not write out the bitmaps or
inode tables at format time if the mke2fs -O lazy_bg fea-
ture is given. Writing out the inode tables can take a
significant amount of time, and has been known to cause
problems for large filesystems due to the amount of dirty
pages this generates in a short time.

4.2 Checksumming

Adding metadata checksumming into ext4 will allow it
to more easily detect corruption, and behave appropri-
ately instead of blindly trusting the data it gets from

30 e The new ext4 filesystem: current status and future plans

disk. The group descriptors already have a checksum
added, per the previous section. The next immediate tar-
get for checksumming is the journal, because it has such
a high density of important metadata and is constantly
being written to, so has a higher chance of wearing out
the platters or seeing other random corruption.

Adding checksumming to the ext4 journal is nearly
complete [7]. In ext3 and ext4, each journal transac-
tion has a header block and commit block. During nor-
mal journal operation the commit block is not sent to
the disk until the transaction header and all metadata
blocks which make up that transaction have been writ-
ten to disk [8]. The next transaction needs to wait for the
previous commit block to hit to disk before it can start
to modify the filesystem.

With this two-phase commit, if the commit block has the
same transaction number as the header block, it should
indicate that the transaction can be replayed at recovery
time. If they don’t match, the journal recovery is ended.
However, there are several scenarios where this can go
wrong and lead to filesystem corruption.

With journal checksumming, the journal code computes
a CRC32 over all of the blocks in the transaction (in-
cluding the header), and the checksum is written to the
commit block of the transaction. If the checksum does
not match at journal recovery time, it indicates that one
or more metadata blocks in the transaction are corrupted
or were not written to disk. Then the transaction (along
with later ones) is discarded as if the computer had
crashed slightly earlier and not written a commit block
at all.

Since the journal checksum in the commit block allows
detection of blocks that were not written into the journal,
as an added bonus there is no longer a need for having
a two-phase commit for each transaction. The commit
block can be written at the same time as the rest of the
blocks in the transaction. This can actually speed up the
filesystem operation noticeably (as much as 20% [7]),
instead of the journal checksum being an overhead.

There are also some long-term plans to add check-
summing to the extent tail, the allocation bitmaps, the
inodes, and possibly also directories. This can be
done efficiently once we have journal checksumming in
place. Rather than computing the checksum of filesys-
tem metadata each time it is changed (which has high
overhead for often-modified structures), we can write

the metadata to the checksummed journal and still be
confident that it is valid and correct at recovery time.
The blocks can have metadata-specific checksums com-
puted a single time when they are written into the
filesystem.

5 Other new features

New features are continuously being added to ext4. Two
features expected to be seen in ext4 are nanosecond
timestamps and inode versioning. These two features
provide precision when dealing with file access times
and tracking changes to files.

Ext3 has second resolution timestamps, but with today’s
high-speed processors, this is not sufficient to record
multiple changes to a file within a second. In ext4, since
we use a larger inode, there is room to support nanosec-
ond resolution timestamps. High 32-bit fields for the
atime, mtime and ctime timestamps, and also a new cr-
time timestamp documenting file creation time, will be
added to the ext4 inode (Figure 4). 30 bits are sufficient
to represent the nanosecond field, and the remaining 2
bits are used to extend the epoch by 272 years.

The NFSv4 clients need the ability to detect updates to
a file made at the server end, in order to keep the client
side cache up to date. Even with nanosecond support
for ctime, the timestamp is not necessarily updated at
the nanosecond level. The ext4 inode versioning feature
addresses this issue by providing a global 64-bit counter
in each inode. This counter is incremented whenever the
file is changed. By comparing values of the counter, one
can see whether the file has been updated. The counter is
reset on file creation, and overflows are unimportant, be-
cause only equality is being tested. The i_version field
already present in the 128-bit inode is used for the low
32 bits, and a high 32-bit field is added to the large ext4
inode.

6 Migration tool

Ext3 developers worked to maintain backwards compat-
ibility between ext2 and ext3, a characteristic users ap-
preciate and depend on. While ext4 attempts to retain
compatibility with ext3 as much as possible, some of
the incompatible on-disk layout changes are unavoid-
able. Even with these changes, users can still easily
upgrade their ext3 filesystem to ext4, like it is possible

2007 Linux Symposium, Volume Two e 31

from ext2 to ex3. There are methods available for users
to try new ext4 features immediately, or migrate their
entire filesystem to ext4 without requiring back-up and
restore.

6.1 Upgrading from ext3 to ext4

There is a simple upgrade solution for ext3 users to start
using extents and some ext4 features without requiring a
full backup or migration. By mounting an existing ext3
filesystem as ext4 (with extents enabled), any new files
are created using extents, while old files are still indi-
rect block mapped and interpreted as such. A flag in the
inode differentiates between the two formats, allowing
both to coexist in one ext4 filesystem. All new ext4 fea-
tures based on extents, such as preallocation and mul-
tiple block allocation, are available to the new extents
files immediately.

A tool will also be available to perform a system-wide
filesystem migration from ext3 to ext4. This migration
tool performs two functions: migrating from indirect to
extents mapping, and enlarging the inode to 256 bytes.

e Extents migration: The first step can be performed
online and uses the defragmentation tool. During
the defragmentation process, files are changed to
extents mapping. In this way, the files are being
converted to extents and defragmented at the same
time.

e Inode migration: Enlarging the inode structure size
must be done offline. In this case, data is backed
up, and the entire filesystem is scanned and con-
verted to extents mapping and large inodes.

For users who are not yet ready to move to ext4, but
may want to in the future, it is possible to prepare their
ext3 filesystem to avoid offline migration later. If an
ext3 filesystem is formatted with a larger inode struc-
ture, 256 bytes or more, the fast extended attribute fea-
ture (Section 2.6) which is the default in ext4, can be
used instantly. When the user later wants to upgrade
to ext4, then other ext4 features using the larger inode
size, such as nanosecond timestamps, can also be used
without requiring any offline migration.

6.2 Downgrading from ext4 to ext3

Though not as straightforward as ext3 to ext4, there is
a path for any user who may want to downgrade from
ext4 back to ext3. In this case the user would remount
the filesystem with the noextents mount option, copy
all files to temporary files and rename those files over
the original file. After all files have been converted
back to indirect block mapping format, the INCOM-
PAT_EXTENTS flag must be cleared using tune2fs, and
the filesystem can be re-mounted as ext3.

7 Performance evaluation

We have conducted a performance evaluation of ext4, as
compared to ext3 and XFS, on three well-known filesys-
tem benchmarks. Ext4 was tested with extents and de-
layed allocation enabled. The benchmarks in this anal-
ysis were chosen to show the impact of new changes
in ext4. The three benchmarks chosen were: Flexible
Filesystem Benchmark (FFSB) [1], Postmark [5], and
10zone [2]. FFSB, configured with a large file work-
load, was used to test the extents feature in ext4. Post-
mark was chosen to see performance of ext4 on small
file workloads. Finally, we used IOzone to evaluate
overall ext4 filesystem performance.

The tests were all run on the 2.6.21-rc4 kernel with de-
layed allocation patches. For ext3 and ext4 tests, the
filesystem was mounted in writeback mode, and ap-
propriate extents and delayed allocation mount options
were set for ext4. Default mount options were used for
XFS testing.

FFSB and 10zone benchmarks were run on the same
4-CPU 2.8 Ghz Intel(R) Xeon(tm) System with 2 GB
of RAM, on a 68GB ultra320 SCSI disk (10000 rpm).
Postmark was run on a 4-CPU 700 MHz Pentium(R) III
system with 4 GB of RAM on a 9 GB SCSI disk (7200
rpm). Full test results including raw data are available
at the ext4 wiki page, http://ext4.wiki.kernel.
org.

7.1 FFSB comparison

FFSB is a powerful filesystem benchmarking tool, that
can be tuned to simulate very specific workloads. We
have tested multithreaded creation of large files. The test

32 e The new ext4 filesystem: current status and future plans

FFSB - Large File Creation

50

45

40

35

30 |

[Throughput
MB/sec

I % CPU usage

25 —

20 —

15 +—
10 +—

o =

T
ext3 ext4 xfs

Figure 6: FFSB sequential write comparison

Postmark

[Read
I Write

Throughput (MB/s)
IN

-
n
|

Ext3 Ext4 XFsS

Figure 7: Postmark read write comparison

runs 4 threads, which combined create 24 1-GB files,
and stress the sequential write operation.

The results, shown in Figure 6, indicate about 35% im-
provement in throughput and 40% decrease in CPU uti-
lization in ext4 as compared to ext3. This performance
improvement shows a diminishing gap between ext4 and
XFS on sequential writes. As expected, the results ver-
ify extents and delayed allocation improve performance
on large contiguous file creation.

7.2 Postmark comparison

Postmark is a well-known benchmark simulating a mail
server performing many single-threaded transactions on
small to medium files. The graph in Figure 7 shows
about 30% throughput gain with with ext4. Similar per-
cent improvements in CPU utilization are seen, because
metadata is much more compact with extents. The write
throughput is higher than read throughput because ev-
erything is being written to memory.

1O0zone
90000

80000 —

70000 — —

o

@ 60000 —H — —

<

< 50000 i i [Ext3
o [Ext4
S 40000 —H — — CIXxFs
=

(<]

=

[

30000 — —

20000 | —

10000 — —

T T
Write Re- Read Re- Random Random
Write Read Write Read

Figure 8: 10zone results: throughput of transactions on
512 MB files

These results show that, aside from the obvious perfor-
mance gain on large contiguous files, ext4 is also a good
choice on smaller file workloads.

7.3 10zone comparison

For the I0zone benchmark testing, the system was
booted with only 64 M of memory to really stress disk
I/0. The tests were performed with 8 MB record sizes on
various file sizes. Write, rewrite, read, reread, random
write, and random read operations were tested. Figure 8
shows throughput results for 512 MB sized files. Over-
all, there is great improvement between ext3 and ext4,
especially on rewrite, random-write and reread opera-
tions. In this test, XFS still has better read performance,
while ext4 has shown higher throughput on write opera-
tions.

8 Conclusion

As we have discussed, the new ext4 filesystem brings
many new features and enhancements to ext3, making it
a good choice for a variety of workloads. A tremendous
amount of work has gone into bringing ext4 to Linux,
with a busy roadmap ahead to finalize ext4 for produc-
tion use. What was once essentially a simple filesystem
has become an enterprise-ready solution, with a good
balance of scalability, reliability, performance and sta-
bility. Soon, the ext3 user community will have the op-
tion to upgrade their filesystem and take advantage of
the newest generation of the ext family.

Acknowledgements

The authors would like to extend their thanks to Jean-
Noél Cordenner and Valérie Clément, for their help on
performance testing and analysis, and development and
support of ext4.

We would also like to give special thanks to Andrew
Morton for supporting ext4, and helping to bring ext4 to
mainline Linux. We also owe thanks to all ext4 devel-
opers who work hard to make the filesystem better, es-
pecially: Ted T’so, Stephen Tweedie, Badari Pulavarty,
Dave Kleikamp, Eric Sandeen, Amit Arora, Aneesh
Veetil, and Takashi Sato.

Finally thank you to all ext3 users who have put their
faith in the filesystem, and inspire us to strive to make
ext4 better.

Legal Statement

Copyright (©) 2007 IBM.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered trade-
marks of International Business Machines Corporation in the
United States and/or other countries.

Lustre is a trademark of Cluster File Systems, Inc.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services

do not imply that IBM intends to make them available in all
countries in which IBM operates.

This document is provided “AS IS,” with no express or im-
plied warranties. Use the information in this document at
your own risk.

References

[1] Ffsb project on sourceforge. Technical report.
http://sourceforge.net/projects/ffsb.

[2] Iozone. Technical report. http://www.iozone.org.

2007 Linux Symposium, Volume Two e 33

[3] Mingming Cao, Theodore Y. Ts’o, Badari
Pulavarty, Suparna Bhattacharya, Andreas Dilger,
and Alex Tomas. State of the art: Where we are
with the ext3 filesystem. In Ottawa Linux
Symposium, 2005.

[4] Jonathan Corbet. Which filesystem for samba4?
Technical report.
http://lwn.net/Articles/112566/.

[5] Jeffrey Katcher. Postmark a new filesystem
benchmark. Technical report, Network Appliances,
2002.

[6] Daniel Phillips. A directory index for ext2. In 5th
Annual Linux Showcase and Conference, pages
173-182, 2001.

[7] Vijayan Prabhakaran, Lakshmi N.
Bairavasundaram, Nitin Agrawal, Haryadi S.
Gunawi, Andrea C. Arpaci-Dusseau, and Remzi
H. Arpaci Dusseau. Iron file systems. In SOSP’05,
pages 206220, 2005.

[8] Stephen Tweedie. Ext3 journalling filesystem. In
Ottawa Linux Symposium, 2000.

[9] Stephen Tweedie and Theodore Y Ts’o. Planned
extensions to the linux ext2/3 filesystem. In
USENIX Annual Technical Conference, pages
235-244,2002.

34 e The new ext4 filesystem: current status and future plans

Proceedings of the
Linux Symposium

Volume Two

June 27th—30th, 2007
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel

Martin Bligh, Google

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.

Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

