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Abstract

Input/output (I/O) attacks have received increasing attention during the last decade. These attacks are performed by
malicious peripherals that make read or write accesses to DRAMmemory or to memory embedded in other
peripherals, through DMA (Direct Memory Access) requests. Some protection mechanisms have been implemented
in modern architectures to face these attacks. A typical example is the IOMMU (Input-Output Memory Management
Unit). However, such mechanisms may not be properly configured and used by the firmware and the operating
system. This paper describes a design weakness that we discovered in the configuration of an IOMMU and a possible
exploitation scenario that would allow a malicious peripheral to bypass the underlying protection mechanism. The
exploitation scenario is implemented for Intel architectures, with a PCI Express peripheral Field Programmable Gate
Array, based on Intel specifications and Linux source code analysis. Finally, as a proof of concept, a Linux rootkit based
on the attack presented in this paper is implemented.
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Introduction
Historically, early personal computers and their periph-
erals were mostly designed and built by the same com-
pany. The peripherals used to be much less complex
than today (microcode, firmware, etc.) and the proces-
sor manufacturers used to trust the peripherals. However,
with the increasing demand for higher performance levels
and hardware services, more sophisticated architectures
have emerged with multiple input/output communica-
tion channels. In particular, normalized communication
buses have been specified to allow tier manufacturers to
complement bare architectures with complex peripher-
als. Then, to relieve the host processor from performing
certain data copies and operations, DMA cycles have
been added to these external buses, allowing peripher-
als to perform read/write accesses to other peripherals
and RAM segments. These communication channels raise
serious security concerns as they offer opportunities to
attackers to corrupt the system and the hosted applica-
tions using somemalicious peripherals. To cope with such
attacks, also called I/O attacks, some hardware protection
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components, such as the IOMMU, have been included in
modern computers.
In order to really take advantage of these security com-

ponents, they have to be properly configured and acti-
vated by the firmware and the kernel at boot time. The
security of the boot process is crucial, as weakness at
this stage may lead to a serious security flaw, despite
the reliable design of these components. To the best of
our knowledge, the security of the boot process has not
been thoroughly investigated in the literature. This paper
focuses on the security analysis of the IOMMU activa-
tion process at boot time. In particular, it is shown that
even if this component has been introduced 10 years ago,
some serious security concerns may be raised about its
actual efficiency to prevent malicious I/O attacks. Briefly,
this paper highlights a novel attack scenario that is related
to the fact that the IOMMU configuration tables are ini-
tialized in a DRAM region which is not protected from
DMA at startup. As a consequence, a malicious periph-
eral may modify these tables just before the activation of
the IOMMU by the hardware. To illustrate the feasibility
of this scenario, a proof of concept is implemented and
presented in this paper.
A preliminary description of the vulnerabilities and the

exploitation scenario of the IOMMUwas presented in [1].
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In this paper, more technical details are provided, in par-
ticular, regarding the related work, the description of the
proof of concept, and the experiment carried out to illus-
trate the IOMMU vulnerability and its exploitation. The
potential impact of the identified vulnerability and the
main limitations are also discussed.
This paper is organized as follows. The next two

sections describe fundamental components of the archi-
tecture involved in the identified design weakness. The
“Technical background” section presents some basic tech-
nical background about PCI Express bus and commu-
nications that are used to perform DMA, while the
“IOMMU internals—DMA remapping” section presents
the IOMMU component as well as some of its inter-
nals that are necessary for the reader to under-
stand the vulnerability and its potential exploitation.
The “I/O vulnerabilities and related work” section
briefly presents some examples of I/O attacks. The
“Bypassing IOMMU” section describes the vulnerability
that we discovered in the configuration of the IOMMU
and a scenario illustrating its possible exploitation. The
“Countermeasures and discussion” section proposes some
countermeasures to cope with this vulnerability. Finally,
the “Conclusion” section concludes and discusses future
work.

Technical background
This section presents basic background concepts related
to the PCI Express bus and communications that are
useful to understand the rest of the paper.

PCI Express bus
Several bus specifications like Industry Standard Archi-
tecture or Peripheral Component Interconnect (PCI)
have been implemented to support the communications
between the CPU and the peripherals. Today, the PCI
Expressbusis used inmost personal computers and servers.
There are three main types of PCI Express devices. The
root of the bus hierarchy, called the root complex, is con-
nected to the CPU, thanks to the host bridge and to the
first-level PCI Express children devices. These devices
can be endpoints (so-called peripherals in the paper)
and bridges. A bridge connects two different logical bus
domains with an upstream and a downstream port.

Communications
Each PCI Express device is identified with a PCI log-
ical bus, a device, and a function identifier (id), noted
bus:dev.fun. This identification is used to route PCI
Express messages between devices.
The receiver of a message is either identified by its iden-

tifier or by an address. Thus, an address has two purposes.
Either it corresponds to an element in the main memory
and the memory controller redirects the corresponding

access to the DRAM or it corresponds to a register of
another device and the memory controller redirects the
corresponding access to the device. In the latter case,
the registers of the device are said memory mapped. For
instance, a memory read message contains a destina-
tion address and a device requester id: the destination of
the corresponding memory read completion (response)
is the associated requester id. PCI Express messages are
therefore routed by address or id. To route the messages
correctly, the bridges are configured by the host to know
which ids and memory ranges are responsible for down-
stream communications. Figure 1 illustrates the routing
of a memory read message targeting address 0xffc from
device 03:00.0 and its associated completion from the
host bridge to the requester device.
At boot time, the devices are not yet configured and they

do not know their own identifier. Indeed, the manufac-
turer does not know the bus on which the device will be
plugged. However, when the firmware looks for all avail-
able devices (using the assembler instruction mov to read
the PCI Express space mapped in memory), each mem-
ory access is processed by the host bridge. The host bridge
then translates this access into a PCI Express configura-
tion request which is routed to the corresponding bus. In
particular, this request contains the identifier of the con-
tacted device. If this device is available in the system, it
receives this request and then knows its identifier. This
step is important to allow a device to communicate.
PCI Express peripherals are able, through DMA

requests, to access other peripheral memory and the main
RAM, even in the kernel memory regions, without any
control of the processor. This raises a major security con-
cerns if the peripheral is controlled by an attacker. To
mitigate this threat, Intel has integrated the IOMMU
hardware component, to filter PCI Express messages. This
component is presented in the next section.

IOMMU internals—DMA remapping
This section presents the services provided by the
IOMMU and describes how it is configured.

Peripheral address space virtualization
IOMMUs are designed to virtualize the memory space
and the interrupts of the peripherals. Memory virtual-
ization is implemented in the so-called DMA remap-
ping units (DMAR) of the IOMMU. The DMAR has
been designed to simplify address space association and
coherency between the drivers and the hardware. Indeed,
device drivers use a different address space than the
peripherals because they process virtual addresses config-
ured by the kernel. When it is necessary to pinpoint a spe-
cific location in the DRAM to configure DMA, the drivers
have to translate virtual addresses to the physical address
space used by the device. This operation increases the
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Fig. 1Memory read message routing

design complexity of the device drivers and microkernel-
s/hypervisors. Using DMAR, the peripherals can share the
same virtual address mappings as the drivers (at least for
translation). As a consequence, the drivers can configure
virtual addresses into peripheral DMA configuration reg-
isters. Furthermore, since DMAR has a two-level address
translation mechanism, the same strategy can even be
used within virtual machines and pass-through drivers.
Consequently, virtualized MMU mappings can be easily
matched to IOMMU mappings by the hypervisors. The
IOMMU also brings similar advantages as the MMU in
the cores. It is for example possible to detect faulty devices
accessing unmapped physical pages because of software
or hardware bugs.
From the security point of view, the filtering feature of

DMAR allows to immediately cope with the largest part
of legacy I/O attacks, if properly configured. The next
section introduces the basic concepts of DMAR configu-
ration which are necessary to understand our attack.

IOMMU configuration
An architecture can contain several IOMMUs, each one
dedicated to a subset of buses (Fig. 1). DMAR units trans-
late and filter requests according to the protection domain
assigned to the emitter device. A protection domain is
defined by a set of translation policies. The process is
divided into two phases. The first one identifies the

protection domain assigned to the emitter device. This
phase, called device to domain mapping, is conceptually
similar to an address translation but instead, it associates
PCI identifiers to address translation domains. In the sec-
ond phase, called address translation, the addresses used
by peripheral memory accesses are translated by DMAR,
before crossing the host bridge (Fig. 1). This translation is
similar to the one carried out by the cores Memory Man-
agement Unit (MMU). Access controls are applicable in
the two translation phases.
Each DMAR unit can be configured separately in a con-

figuration page and a tree structure (Fig. 2), the latter
placed in DRAM. This configuration page contains the
main control register called Global Command Register
(GCMDR) which is designed to activate the translation
mechanism, thanks to the translation enable (TE) bit
[2, section 10.4]. It also contains a pointer to the tree
structure root (i.e., the root entry of the root table in
Fig. 2), named the Root Table Address Register (RTAR).
The location of the configuration page of a DMAR is
identified by means of a dedicated register in the mem-
ory controller, set by the firmware. The identifier of a
PCI Express message sender is used to index the first
two tables of the tree structure (the root table and the
context table) in the first phase. The resolved address
is then used to pinpoint the structures for the second
phase. These structures are indexed with the destination
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Fig. 2 DMA Remapping with 48-b virtual addresses in 4-kB pages

address of the PCI Express message. The result is the
physical address of the translation. During the handling
of these tables, a dedicated bit indicates if the access is
granted or forbidden. Finally, it is noteworthy that the sec-
ond translation phase can be deactivated (pass through
mode) thanks to the translation type field of a context
entry.
Unfortunately, like other hardware or software sys-

tems, these mechanisms may be inefficient if the imple-
mentation and the configuration are not correct. In the
following, we briefly present some examples of such
vulnerabilities before describing in detail the novel vulner-
ability we discovered as well as the exploitation example
we implemented.

I/O vulnerabilities and related work
Many I/O attacks have been presented in the literature
[3–7]. In this paper, we focus on DMA attacks. These
attacks were described in several studies. In particular, [8]
demonstrates that an outsider can compromise an entire
system by exploiting a vulnerability in one of its network
cards. Fortunately, most of these vulnerabilities have been
fixed with the integration of the IOMMU.
As presented in the previous section, a well-configured

DMAR unit is theoretically able to enforce an expected
access control policy on a DMA accessible memory. The
access control policy is given by the DMAR domain,
and a domain is associated to a device through device
to domain mapping. Consequently, in order to be effi-
cient, the DMAR unit needs to identify precisely each
DMA-capable device.
However, in [9], the authors take benefit of the collo-

cation of PCI Express and PCI bus to exploit a weakness
in the filtering performed by the IOMMU. Indeed, the
PCI to PCI Express bridge uses its own PCI id as the
requester id when translating PCI read/write cycles to PCI
Express messages, acting like a proxy. Therefore, all the

devices behind the PCI Express to PCI bridge are shar-
ing the identity of the bridge from the IOMMU point of
view, and so the same domain. They exploited this vulner-
ability with a malicious firewire controller plugged behind
the same bridge of a legitimate network card, to inject
malicious Ethernet frames into an IP kernel stack. Finally,
they consequently succeeded in corrupting an operating
system ARP cache by injecting customized ARP reply
packets.
The authors of [10] argue that, for performance rea-

sons, kernels are unable to enforce a strict IOMMU secu-
rity policy regarding DMA buffers management. Buffers
shared between a driver and a peripheral for DMA are
allocated and deallocated at a given frequency. Each time
a DMA buffer is allocated or freed, the IOMMU con-
figuration has to be updated. To commit configuration
changes, the CPU has to flush the IOMMU transla-
tion caches called Input/Output Translation Lookaside
Buffer (IOTLB) to update the security policy. However,
the update cannot be committed at each change of the
DMAmemory map because that will severely degrade the
system performances. Indeed, this operation consumes an
average of 2000 CPU cycles in Intel Sandy Bridge architec-
ture. This is why the IOTLB flush is deferred by the kernel
and performed at a lower frequency than DMA mapping
changes in the system. This performance scaling tech-
nique opens potential time intervals during which a buffer
is still available to a peripheral despite the fact that it had
been reallocated. To our knowledge, this vulnerability has
not yet been exploited to date.
In 2011, Wojtczuk and Rutkowska succeeded to attack

Xen hypervisor, with an active IOMMU, using malicious
Message-Signaled Interrupts (MSI) [11]. The main idea is
to reproduce the obsolete bouncing I/O attack in which
software could use peripherals’ capability to DMA in
order to modify kernel memory space. To bypass the pro-
tection, authors use the capability of devices, here an
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Intel e1000 network controller, to set an arbitrary inter-
rupt vector into an MSI, to remotely fire a hypercall. If
the malicious hypercall is issued when the virtual machine
is executing a specific system call, which is controlled
by unprivileged malicious application code, it is possi-
ble to execute a remote buffer overflow with hypervisor
execution privileges.
Even if most of these attacks are today inefficient in

recent architectures, they highlight the fact that the con-
figuration of the IOMMU by the firmware and IOMMU
Linux driver in recent kernels presents new weaknesses
that could be exploited by an attacker. More recently,
authors of [12] presented a boot time DMA attack allow-
ing an attacker to recover macOS FileVault2 passwords,
using a thunderbolt device. This attack leverages the
same vulnerability we had previously introduced in [13]
and [1], which allows DMA at boot time before the activa-
tion of any protection mechanism. Also, this vulnerability
has been highlighted in a developers mailing list of the
coreboot x86 firmware project [14]. The next section
details this vulnerability and presents an attack scenario in
which one can directly bypass IOMMU protection against
I/O Attacks.

Bypassing IOMMU
This section describes some weaknesses discovered in
the firmware and the Linux kernel and discusses when
and how these weaknesses can be exploited to bypass
DMAR. The observations presented in this section
are based not only on the Intel documentation, but
also on the information collected empirically with the
hypervisor and Field Programmable Gate Array (FPGA)
malicious peripheral prototypes presented in the next
section. The experiments performed in our study are
based on Dell machine precision T1700, with the fol-
lowing technical details: firmware A06 (12/05/2013);
Linux 4.3.4 (with IOMMU_INTEL=y); Intel i7-4770
processor; chipset Intel PCH c220; bootloader grub
2.02.beta2.

Attack assumptions
Two preconditions are needed for the attacker to be suc-
cessful: the first one concerns the configuration of the
target machine and the second one concerns the access to
the PCI Express bus.
As regards the first precondition, we assume that the

attacker has a precise knowledge of the hardware and
kernel version of the victim machine, either directly,
through physical access, or indirectly by fingerprinting.
This assumption is realistic in many situations, e.g., in
big companies or professional working environments,
where, most of the time, homogeneous and standard
machines are deployed, to simplify administration and
management tasks.

As regards the access to the PCI Express bus, this can
be achieved either by plugging a malicious peripheral or
by remotely corrupting a peripheral of the victimmachine
using for instance the attack presented in [8]).

A firmware-induced vulnerability
The attack we present in this paper first relies on a vulner-
ability of the firmware used in the architecture.

Device configuration
At startup, IOMMUs are deactivated. During the boot
time configuration, the firmware scans the PCI configura-
tion space to discover and initialize vital devices, like the
main video controller, loading and executing its embed-
ded firmware. Read and write accesses to the configura-
tion space generate PCI Express configuration messages
that are sent to the targeted device. Devices know
their PCI ids after the first scan, as explained in the
“Communications” section. Therefore, the peripherals are
able to generate valid messages at the early firmware exe-
cution stage, long before the execution of the bootloader
and then of the operating system kernel. At the end of
the execution of the firmware, the control is given to the
bootloader and to the kernel.

PCI Express bridges early configuration
Nowadays, DMA is granted early by firmwares to all
peripherals, mainly for compatibility reasons. The reason
is that modern kernels, in our case Linux, do not seem
to know how to deal with PCI Express bridges confi-
guration. This is a common fact that we have verified
on our target firmware architecture and which is also
widely acknowledged in open source firmware projects
[14]. More precisely, PCI Express bridges configuration
contains the Bus Master Enable (BME) bit which controls
the upstream communications, i.e., if the messages gene-
rated by child devices are allowed to go upstream and so
perform DMA.
As a consequence, devices can initiate DMA requests

long before IOMMU configuration and kernel loading.

Linux and Intel IOMMU driver DMAweaknesses
To fulfill our attack, we also exploited a weakness in the
Intel IOMMULinux driver drivers/iommu/intel-iommu.c.
The latter makes the IOMMU configuration vulnerable
during the boot up process. In order to understand the
details, it is necessary to review the boot sequence on a
Linux machine.

IOMMU configuration
After the firmware operations, the kernel is uncompressed
and loaded by the bootloader (GNU GRUB in our experi-
ment). Linux kernel modules and drivers are then loaded
and initialized. DMAR is configured by one of these
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drivers. The Intel IOMMU driver creates the translation
structures and writes them in the main DRAM. It builds
the address translation domains and device to domain
mapping before copying the root table pointer into the
associated register. Finally, the driver activates DMAR by
setting the TE bit of the GCMD Register. Let us note
that these structures are stored in memory in areas not
protected by any security mechanism.

Cache policy
The vulnerability we discovered is exploitable also because
Linux flushes cache lines (L1 / L2 and Last Level Cache)
after every table entrymodification, to ensure the integrity
of the structure inmemory. Consequently, the time period
during which the entire DMAR configuration exists in
memory is maximized.

Physical memory space
We noticed that as long as the machine hardware con-
figuration is not modified, the physical address of the
DMAR root table is not changed. This property simpli-
fies the exploitation presented in this paper, preventing
the attacker from searching DMAR structures into the
physical memory space.

A vulnerability window
Considering the previous observations, Fig. 3 highlights
the time periods during which somemalicious peripherals
can initiate DMA requests. Two important time windows
are identified. The vulnerability window represents the
time interval during which peripherals are able to per-
form DMA. It starts right after device address association
by the firmware and ends after IOMMU activation in
the IOMMU driver activation phase. Right after IOMMU
activation, DMA is denied for malicious peripherals. The
write window depicts the short interval of time during
which the IOMMU configuration is fully placed in DRAM
and is vulnerable.
Let us remind that, as stated in the “Cache policy”

section, the DMAR configuration physical address does
not change, as long as the hardware, the firmware, and the
kernel remain unmodified.

Attacking DMAR service
This subsection presents how to exploit the vulnerabil-
ity window described in the previous section, in order to
bypass IOMMU protection against I/O attacks.

Prerequisites
The attack scenario requires to locate the root of IOMMU
configuration inmemory by reading the RTAR register. As
explained in the previous sections, this address remains
constant and the RTAR register can be easily read within
a Linux kernel module loaded at runtime.
The attack requires a free memory page. As the physi-

cal memory map does not change between two reboots,
the attacker can easily find free memory pages using the
coloring technique to see if any software has modified the
page during the boot process. One can color a page during
the preboot phase, using an UEFI custom application and
can read it after the boot process using the dd command
on /dev/mem file for example.

Exploitation
Our exploitation aims at bypassing the IOMMU mem-
ory protection without altering the integrity of the kernel
itself. Fulfilling this constraint makes the attack more
difficult to identify.
The easiest way for a malicious peripheral to access the

DRAM is to enable pass through mode in the context
entry of the DMAR (the address translation part of Fig. 2
must grant every access of the malicious peripheral). The
following steps describe a possible scenario to grant these
accesses at the startup of the system.
First, the configuration of the system, at startup, allows

all peripherals to write to DRAM. Thus, the malicious
peripheral can easily produce a malicious context table
in the preselected free memory page (step 0, Fig. 4),
with all entries set to pass through. This step must be
performed at the beginning of startup, during the vulner-
ability window.
When Linux begins its execution, it first writes its own

root table (steps 1 and 2). The second step to be performed
by the attacker is to overwrite the root table entry associ-
ated to her device. If the corrupted device is connected to

Fig. 3 Vulnerability and write time windows
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Fig. 4 Linux IOMMU driver attack implementation

logical bus 5, the sixth entry has to be overwritten before
the IOMMU activation through bit TE.
To maximize the chances to actually overwrite the root

table entry during the write window, themalicious periph-
eral floods the bus with PCI Express write requests to
the sixth entry of the root table (step ∞). Finally, Linux
activates the IOMMU (step 3) with compromised DMAR
structures. From now, the malicious peripheral can per-
form any DMA.

Attack proof-of-concept implementation
In order to validate our intuition, we performed pre-
liminary experiments and developed a proof of concept.
For that purpose, we first used a tiny bare-metal recur-
sive hypervisor library called Abyme that we developed.
Then, we ran the real attack with a corrupted peripheral,
simulated by a FPGA PCI Express peripheral.

Preliminary hypervisor-based implementation
Abyme is used as a privileged tool to monitor IOMMU
configuration events. The goal here is to perform, with
software, the steps (0) and (∞) of the attack implementa-
tion. Since x86 hypervisors share DRAM physical address
space with PCI Express peripherals, the simulation of the
preceding steps in our hypervisor is close enough to the
malicious peripheral point of view.
Abyme library allows the developer to register hooks

which are functions called back when selected virtual
machine interruptions occur. It is also possible to recon-
figure virtual machine level memory translation, remap
pages, or change their access control in order to gener-
ate memory access faults and trigger the corresponding
hook.
To simulate the attack, our strategy is as follows.We first

configure our hypervisor at boot time, before the startup

of the Linux virtual machine. We register a hook to the
virtual machine page fault event (EPT violations), which is
raised when virtual machine memory accesses are denied.
We also register a hook to virtual machine interruptions
raised when the step-by-step execution mode is active.
Then, we unmap (read, write, and execute credentials
off ) the DMAR unit 0 configuration page, associated to
the external peripherals. Finally, we launch the virtual
machine.
The goal here is to detect when the Linux IOMMU

driver activates the translation setting GCMDR.TE bit to
1, to perform steps (0) and (∞) with the hypervisor. The
Linux IOMMU driver accesses the configuration page
several times. Each time an access is performed (i) a
virtual machine interruption occurs; (ii) the single step
execution is activated; (iii) if GCMDR.TE bit is to be writ-
ten, we perform steps (0), (∞) and flush the caches; (iv) we
remapDMAR 0 page; (v) we continue virtual machine exe-
cution to let the virtual machine execute the write access;
(vi) single step virtual machine interruption occurs; (vii)
we unmap again DMAR 0 page; and (viii) we resume
virtual machine execution.
With this scenario, we were able to successfully simulate

the attack described in Fig. 4.
In this preliminary experiment with our hypervisor

being successful, we decided to implement a real proof
of concept on an FPGA PCI Express peripheral. This
FPGA and our implementation choices are presented in
the following.

FPGA device implementation
We based the development of our malicious peripheral on
Milkymist System on Chip [15], which is originally a video
DJing open hardware project. Thanks to the hardware
flexibility of FPGAs and the thoughtful modularity of
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hardware and software developed for Milkymist, we
removed unneeded functionalities and added a PCI
Express endpoint stack with minimum effort. Milkymist
is made for a custom board hosting a Xilinx virtex 4 FPGA
[16]. Since we needed a PCI Express connector and giga-
bit transceivers to develop the PCI Express peripheral, we
have chosen a Xilinx ML605.
Our SOC contains the original Milkymist Lattice

Mico32 microprocessor (LM32), Onchip ROM, Ether-
net MAC, bus bridges, caches, and controllers. In addi-
tion, we developed the malicious PCI Express peripheral,
PCIE-EP. This core brings host memory access to the
SOC through PCI Express memory messages. With
PCIE-EP, the LM32 is able to program memory reads
and memory writes (with a high rate mode). Note that
this SOC is flexible and can be adapted for other pur-
poses, e.g., for the implementation of integrity tests in
the context of a hardware-assisted trusted architecture as
presented in [17].

Results and proof of concept
In order to demonstrate that the exploitation of the dis-
covered vulnerability allows a potential attacker to further
take control of the host, we considered an example of a
kernel rootkit that we injected in kernel memory through
DMA requests performed by our malicious FPGA device,
once it has successfully modified the IOMMU configu-
ration so that it can make read/write accesses to kernel
memory.

Rootkit attack
The considered rootkit is a binary code which is injected
in kernel memory and modifies the behavior of the
setuid kernel system call. According to the POSIX
programmer’s setuid manual page, the normal behav-
ior for this system call is to modify the real user uid,
effective uid, and others accordingly, if the user has the
rights or enough privileges to do so. Our rootkit modi-
fies the preceding behavior in a way that each time this
functionality is called, the euid (effective uid) of the
calling task is systematically set to 0, which gives root
user effective privileges to the calling process. We devel-
oped a small C code to call setuid function, that we
executed by a non-root user, both in the presence and
in the absence of our exploitation of the IOMMU con-
figuration. The short video at http://homepages.laas.fr/
nicomett/SSTIC2016/iommu-pwn-sstic.webm shows the
rootkit installation and use.

Implementation details
Linux system call implementation is located in the file
kernel/sys.c. Our attack modifies the setuid()
system call implementation. The following listing contains
the most relevant parts of its code.

SYSCALL_DEFINE1(setuid, uid_t, uid)
{
struct user_namespace *ns = current_user_ns();
const struct cred *old;
struct cred *new;
int retval;
kuid_t kuid;
// (1)
kuid = make_kuid(ns, uid);
[..]
new = prepare_creds();
[..]
old = current_cred();
[..]
// (2)
new->fsuid = new->euid = kuid;
// (3)
retval = security_task_fix_setuid(new, old,

LSM_SETID_ID);
[..]
// (4)
return commit_creds(new);
[..]

}

Our objective is to modify the setuid system call code
to set the euid to 0 for the current process. If we look at
the source code, we can notice that the euid is stored in
the new structure (2) and that this modification is com-
mitted at the function return (4). Let us note that we also
have to jump the function call located in (3), which invali-
dates our possible modifications to new->euid field.
Consequently, we have to inject some code to mod-

ify new, cancel security checks, and make sure that new
would not be modified afterwards.
The next listing illustrates the main steps of new affec-

tation with the required uid as function parameter.

ffffffff810868f0 <SyS_setuid>:
[..]
// (1)
ffffffff81086909: mov %rdi,%rbx
[..]
// (2)
ffffffff8108698e: mov %ebx,0x14(%r12)
ffffffff81086993: mov %ebx,0x1c(%r12)
// (3)
ffffffff81086998: mov $0x1,%edx
ffffffff8108699d: mov %r13,%rsi
ffffffff810869a0: mov %r12,%rdi
ffffffff810869a3: callq ffffffff81279be0 <

security_task_fix_setuid>
[..]
// (4)
ffffffff810869af: mov %r12,%rdi
ffffffff810869b2: callq ffffffff81094870 <

commit_creds>
ffffffff810869b7: movslq %eax,%r14
ffffffff810869ba: pop %rbx
ffffffff810869bb: mov %r14,%rax
ffffffff810869be: pop %r12
ffffffff810869c0: pop %r13
ffffffff810869c2: pop %r14
ffffffff810869c4: pop %rbp
ffffffff810869c5: retq

The parameter is copied in %rbx (1). The code affec-
tation of new is located at (2), directly followed by the
credential check function call (3). Then, (4) invokes the
credential commit function and returns from the sys-
tem call. Finally, let us recall that Linux core kernel

http://homepages.laas.fr/nicomett/SSTIC2016/iommu-pwn-sstic.webm
http://homepages.laas.fr/nicomett/SSTIC2016/iommu-pwn-sstic.webm
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virtual address space is not randomized. Furthermore,
physical addresses can be trivially deduced from vir-
tual one with the following bitwise function: f (a) =
a ∧ ¬0xffffffff80000000. Also, we can note that
instruction at 0xffffffff81086998 is 4 B aligned,
which makes DMA easier because it is also aligned to
double words.
Therefore, our rootkit payload is written at physical

address 0x01086998, The payload simply writes the
double word 0 to the (2) affectation addresses. Then, it
jumps over (3) function call, to (4). The rootkit payload
listing is listed hereafter.

ffffffff81086998 <rk>:
ffffffff81086998: xor %ebx,%ebx
ffffffff8108699a: mov %ebx,0x14(%r12)
ffffffff8108699f: mov %ebx,0x1c(%r12)
ffffffff810869a4: jmp 0xffffffff810869af
ffffffff810869a6: xchg %ax,%ax //padding

The first instruction sets b register (%rbx) to zero.
Then, the two next instructions set to zero new structure
pointed by register 12 (%r12). Finally, we jump over the
remaining invalid bytes of credential function call to go to
the commit call.
This proof of concept illustrates that in the presence

of the vulnerability window highlighted in this paper,
IOMMU protection can be bypassed at boot time to run
old-fashioned classical I/O attacks. These consequences
may be extremely serious, far beyond those of the exper-
iment. It could be possible for an attacker to compromise
confidentiality by listening to the activities on the system
by adding a sniffer. It could also be possible for the attacker
to simply shutdown the system and make it unavailable.

Countermeasures and discussion
Technically, the vulnerability window described in the
“Bypassing IOMMU” section is present in every machine
whose firmware allows DMA in the bridges because of
kernel compatibility and legacy reasons. We believe that
a large part of nowadays machines are impacted by this
DMA vulnerability window. In particular, the firmware
developers almost all the time rely on frameworks or
libraries like [14] and [18] in which this option is enabled.
Accordingly, it is important to implement corrective
actions.
This section discusses some countermeasures to cope

with the investigated attack scenario and the trade-off
between the cost and the efficiency of these countermea-
sures. Also, we discussed the limitations and constraints
associated with the considered attack.

Countermeasures
Efficient protection solutions to cope with the attack dis-
cussed in the previous sections, and more generally boot

time attacks, mainly rely on the configuration of the hard-
ware of each computer, which is the responsibility of both
the firmware and the kernel.
From our point of view, even if it is challenging

for operating systems to take into account all the
details of all hardware platforms, they should sup-
port at least the security-related features of the sys-
tem bus, PCI Express in our case study. We previously
mentioned the behavior of the firmware regarding the
BME bit present in the PCI Express bridges. This bit
can prevent the unnecessary pre-boot DMA capability
of peripherals and so avoid the vulnerability window.
This protection seems to be the best countermeasure for
the attack presented in this paper. As a matter of fact, both
kernel and firmware developers have to rethink the sys-
tem bus pre-boot configuration. Actually, as stated in [14],
this bit is set to zero because of legacy and kernel com-
patibility reasons. This solution could be easily included
in the next generation of machine firmwares. However,
there is still the question about updating currently used
firmwares. This complex and expensive operation, which
is under the responsibility of machine manufacturers, can
take several months to be implemented.
Some alternative solutions can also be investigated to

increase the effort needed by an attacker to succeed in per-
forming the considered attack. For instance, the platform
that we have studied brings additional security features:
some DMA protected configurable memory segments
(the DMA Protected Range specified by the processor
and the Protected Memory Ranges implemented in the
IOMMU) [19, Vol. 2, 2.5]. Linux does not use these mem-
ory segments, placing IOMMU structures outside the
protected ranges. Devices are consequently able to read
and write the IOMMU configuration before its activation.
These DMA-protected memory segments are common in
modern architectures and should be systematically used
to set up such hardware protection components, such as
the IOMMU.
Despite these protections, the system remains vul-

nerable to DMA attacks while the firmware is being
executed, in the first phase of the boot process. This
weakness is due to the fact that the firmware does not
filter DMA. It can be exploited by a malicious periph-
eral to modify the code of either Linux or the firmware
itself and so prevent the activation of the IOMMU. To
address this problem, it is necessary to check the integrity
of software components, e.g., by using a technology
like Intel TXT.

Limitations
As discussed in the “Bypassing IOMMU” section, to be
successful, the attacker must have a precise knowledge of
the hardware and kernel version of the victim machine,
to be able to predetermine the exact physical addresses
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of IOMMU configuration and of the required free pages.
While such information can be easily obtained for stan-
dard machines, it is less realistic in the case of specific or
customized platforms.
Another concern that can be raised is related to the

stealthiness of the attack. The attack consists in configur-
ing the IOMMU using identity mapping1 in the way that
it deactivates the translation with pass-through mode.
In our attack scenario, either the attacker has a phys-

ical access to the victim machine and uses a malicious
peripheral or a device of the victim machine is corrupted
remotely. In the first case, the attack can be designed to
be stealthy by construction (e.g., by hiding the malicious
logic in addition to the implementation of the legitimate
behavior). In the second case, two situations can be dis-
tinguished. If the corrupted device is configured by the
kernel with identity mapping option, the attack will not
be perceived by the victim. On the other hand, if it is
not identity mapped, the corrupted driver will probably
fail and the victim machine will have to be rebooted,
though it would have been already permanently compro-
mized. Nevertheless, the attacker can enforce the usage
of identity mapping for the corrupted device using ACPI
Reserved Memory Region Reporting Structures.

Conclusion
The IOMMU has been included several years ago in
Intel processor architectures to provide better protec-
tion against low-level attacks. While this mechanism has
proved to be efficient to cope with several I/O attacks,
this paper shows that it can be bypassed by exploiting a
design weakness in its configuration by both firmwares
and the Linux IOMMU driver. The corresponding vulner-
ability is discussed in this paper, a proof of concept and
an experiment illustrating its possible exploitation are also
presented. The attack explored makes it possible for mali-
cious peripherals to make read and write accesses in the
main memory and to bypass the protection mechanisms
embedded in the IOMMU. We are currently studying
other operating systems (such as Windows, BSD systems)
in order to check whether this vulnerability is only related
to Linux kernel or not. In the same way, we also plan to
investigate the boot process when the Intel TXT is acti-
vated to check that this technology does not suffer from
similar weaknesses.

Endnote
1 Basically, Linux creates two types of memory domains.

In the first type of domain, the I/O Virtual Addresses
(IOVAs) used by the peripheral and configured by the
driver are different than the physical ones (IOPAs), trans-
lated by the IOMMU. The second type defines IOVAs as
identical as IOPAs and is called identity mapping.
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